381 research outputs found
Markerless View Independent Gait Analysis with Self-camera Calibration
We present a new method for viewpoint independent markerless gait analysis. The system uses a single camera, does not require camera calibration and works with a wide range of directions of walking. These properties make the proposed method particularly suitable for identification by gait, where the advantages of completely unobtrusiveness, remoteness and covertness of the biometric system preclude the availability of camera information and use of marker based technology. Tests on more than 200 video sequences with subjects walking freely along different walking directions have been performed. The obtained results show that markerless gait analysis can be achieved without any knowledge of internal or external camera parameters and that the obtained data that can be used for gait biometrics purposes. The performance of the proposed method is particularly encouraging for its appliance in surveillance scenarios
Reversible and Irreversible Spacetime Thermodynamics for General Brans-Dicke Theories
We derive the equations of motion for Palatini F(R) gravity by applying an
entropy balance law T dS= \delta Q+\delta N to the local Rindler wedge that can
be constructed at each point of spacetime. Unlike previous results for metric
F(R), there is no bulk viscosity term in the irreversible flux \delta N. Both
theories are equivalent to particular cases of Brans-Dicke scalar-tensor
gravity. We show that the thermodynamical approach can be used ab initio also
for this class of gravitational theories and it is able to provide both the
metric and scalar equations of motion. In this case, the presence of an
additional scalar degree of freedom and the requirement for it to be dynamical
naturally imply a separate contribution from the scalar field to the heat flux
\delta Q. Therefore, the gravitational flux previously associated to a bulk
viscosity term in metric F(R) turns out to be actually part of the reversible
thermodynamics. Hence we conjecture that only the shear viscosity associated
with Hartle-Hawking dissipation should be associated with irreversible
thermodynamics.Comment: 12 pages, 1 figure; v2: minor editing to clarify Section III, fixed
typos; v3: fixed typo
The universal viscosity to entropy density ratio from entanglement
We present evidence that the universal Kovtun-Son-Starinets shear viscosity
to entropy density ratio of 1/4\pi can be associated with a Rindler causal
horizon in flat spacetime. Since there is no known holographic (gauge/gravity)
duality for this spacetime, a natural microscopic explanation for this
viscosity is in the peculiar properties of quantum entanglement. In particular,
it is well-known that the Minkowski vacuum state is a thermal state and carries
an area entanglement entropy density in the Rindler spacetime. Based on the
fluctuation-dissipation theorem, we expect a similar notion of viscosity
arising from vacuum fluctuations. Therefore, we propose a holographic Kubo
formula in terms of a two-point function of the stress tensor of matter fields
in the bulk. We calculate this viscosity assuming a minimally coupled scalar
field theory and find that the ratio with respect to the entanglement entropy
density is exactly 1/4\pi in four dimensions. The issues that arise in
extending this result to non-minimally coupled scalar fields, higher spins, and
higher dimensions provide interesting hints about the relationship between
entanglement entropy and black hole entropy.Comment: 30 pages; v2: footnote added, minor editin
Higher Curvature Gravity and the Holographic fluid dual to flat spacetime
Recent works have demonstrated that one can construct a (d+2) dimensional
solution of the vacuum Einstein equations that is dual to a (d+1) dimensional
fluid satisfying the incompressible Navier-Stokes equations. In one important
example, the fluid lives on a fixed timelike surface in the flat Rindler
spacetime associated with an accelerated observer. In this paper, we show that
the shear viscosity to entropy density ratio of the fluid takes the universal
value 1/4\pi in a wide class of higher curvature generalizations to Einstein
gravity. Unlike the fluid dual to asymptotically anti-de Sitter spacetimes,
here the choice of gravitational dynamics only affects the second order
transport coefficients. We explicitly calculate these in five-dimensional
Einstein-Gauss-Bonnet gravity and discuss the implications of our results.Comment: 13 pages; v2: modified abstract, added references; v3: added
clarifying comments, modified discussio
Mapping species distributions: A comparison of skilled naturalist and lay citizen science recording
To assess the ability of traditional biological recording schemes and lay citizen science approaches to gather data on species distributions and changes therein, we examined bumblebee records from the UK’s national repository (National Biodiversity Network) and from BeeWatch. The two recording approaches revealed similar relative abundances of bumblebee species but different geographical distributions. For the widespread common carder (Bombus pascuorum), traditional recording scheme data were patchy, both spatially and temporally, reflecting active record centre rather than species distribution. Lay citizen science records displayed more extensive geographic coverage, reflecting human population density, thus offering better opportunities to account for recording effort. For the rapidly spreading tree bumblebee (Bombus hypnorum), both recording approaches revealed similar distributions due to a dedicated mapping project which overcame the patchy nature of naturalist records. We recommend, where possible, complementing skilled naturalist recording with lay citizen science programmes to obtain a nation-wide capability, and stress the need for timely uploading of data to the national repository
Spatial abundance and clustering of Culicoides (Diptera: Ceratopogonidae) on a local scale
BACKGROUND: Biting midges, Culicoides, of the Obsoletus group and the Pulicaris group have been involved in recent outbreaks of bluetongue virus and the former was also involved in the Schmallenberg virus outbreak in northern Europe. METHODS: For the first time, here we investigate the local abundance pattern of these two species groups in the field by intensive sampling with a grid of light traps on 16 catch nights. Neighboring trap catches can be spatially dependent on each other, hence we developed a conditional autoregressive (CAR) model framework to test a number of spatial and non-spatial covariates expected to affect Culicoides abundance. RESULTS: The distance to sheep penned in the corner of the study field significantly increased the abundance level up to 200 meters away from the sheep. Spatial clustering was found to be significant but could not be explained by any known factors, and cluster locations shifted between catch nights. No significant temporal autocorrelation was detected. CAR models for both species groups identified a significant positive impact of humidity and significant negative impacts of precipitation and wind turbulence. Temperature was also found to be significant with a peak at just below 16 degrees Celcius. Surprisingly, there was a significant positive impact of wind speed. The CAR model for the Pulicaris group also identified a significant attraction to the smaller groups of sheep placed in the field. Furthermore, a large number of spatial covariates which were incorrectly found to be significant in ordinary regression models were not significant in the CAR models. The 95% C.I. on the prediction estimates ranged from 20.4% to 304.8%, underlining the difficulties of predicting the abundance of Culicoides. CONCLUSIONS: We found that significant spatial clusters of Culicoides moved around in a dynamic pattern varying between catch nights. This conforms with the modeling but was not explained by any of the tested covariates. The mean abundance within these clusters was up to 11 times higher for the Obsoletus group and 4 times higher for the Pulicaris group compared to the rest of the field
Environmental infuence on calcifcation of the bivalve Chamelea gallina along a latitudinal gradient in the Adriatic Sea
Environmental factors are encoded in shells of marine bivalves in the form of geochemical properties, shell microstructure and shell growth rate. Few studies have investigated how shell growth is affected by habitat conditions in natural populations of the commercial clam Chamelea gallina. Here, skeletal parameters (micro-density and apparent porosity) and growth parameters (bulk density, linear extension and net calcification rates) were investigated in relation to shell sizes and environmental parameters along a latitudinal gradient in the Adriatic Sea (400 km). Net calcification rates increased with increasing solar radiation, sea surface temperature and salinity and decreasing Chlorophyll concentration in immature and mature shells. In immature shells, which are generally more porous than mature shells, enhanced calcification was due to an increase in bulk density, while in mature shells was due to an increase in linear extension rates. The presence of the Po river in the Northern Adriatic Sea was likely the main driver of the fluctuations observed in environmental parameters, especially salinity and Chlorophyll concentration, and seemed to negatively affect the growth of C. gallina
Inorganic carbon physiology underpins macroalgal responses to elevated CO2
Beneficial effects of CO2 on photosynthetic organisms will be a key driver of ecosystem change under ocean acidification. Predicting the responses of macroalgal species to ocean acidification is complex, but we demonstrate that the response of assemblages to elevated CO2 are correlated with inorganic carbon physiology. We assessed abundance patterns and a proxy for CO2:HCO3- use (\u3b413C values) of macroalgae along a gradient of CO2 at a volcanic seep, and examined how shifts in species abundance at other Mediterranean seeps are related to macroalgal inorganic carbon physiology. Five macroalgal species capable of using both HCO3- and CO2 had greater CO2 use as concentrations increased. These species (and one unable to use HCO3-) increased in abundance with elevated CO2 whereas obligate calcifying species, and non-calcareous macroalgae whose CO2 use did not increase consistently with concentration, declined in abundance. Physiological groupings provide a mechanistic understanding that will aid us in determining which species will benefit from ocean acidification and why
Growth and Demography of the Solitary Scleractinian Coral Leptopsammia pruvoti along a Sea Surface Temperature Gradient in the Mediterranean Sea
The demographic traits of the solitary azooxanthellate scleractinian Leptopsammia pruvoti were determined in six populations on a sea surface temperature (SST) gradient along the western Italian coasts. This is the first investigation of the growth and demography characteristics of an azooxanthellate scleractinian along a natural SST gradient. Growth rate was homogeneous across all populations, which spanned 7 degrees of latitude. Population age structures differed between populations, but none of the considered demographic parameters correlated with SST, indicating possible effects of local environmental conditions. Compared to another Mediterranean solitary scleractinian, Balanophyllia europaea, zooxanthellate and whose growth, demography and calcification have been studied in the same sites, L. pruvoti seems more tolerant to temperature increase. The higher tolerance of L. pruvoti, relative to B. europaea, may rely on the absence of symbionts, and thus the lack of an inhibition of host physiological processes by the heat-stressed zooxanthellae. However, the comparison between the two species must be taken cautiously, due to the likely temperature differences between the two sampling depths. Increasing research effort on determining the effects of temperature on the poorly studied azooxanthellate scleractinians may shed light on the possible species assemblage shifts that are likely to occur during the current century as a consequence of global climatic change
Contrasting patterns of population structure and gene flow facilitate exploration of connectivity in two widely distributed temperate octocorals
This is the final version of the article. Available from Springer Nature via the DOI in this record.Connectivity is an important component of metapopulation dynamics in marine systems and can influence population persistence, migration rates and conservation decisions associated with Marine Protected Areas (MPAs). In this study, we compared the genetic diversity, gene flow and population structure of two octocoral species, Eunicella verrucosa and Alcyonium digitatum, in the northeast Atlantic (ranging from the northwest of Ireland and the southern North Sea, to southern Portugal), using two panels of thirteen and eight microsatellite loci, respectively. Our results identified regional genetic structure in E. verrucosa partitioned between populations from southern Portugal, northwest Ireland, and Britain/France; subsequent hierarchical analysis of population structure also indicated reduced gene flow between southwest Britain and northwest France. However, over a similar geographical area, A. digitatum showed little evidence of population structure, suggesting high gene flow and/or a large effective population size; indeed, the only significant genetic differentiation detected in A. digitatum occurred between North Sea samples and those from the English Channel/northeast Atlantic. In both species the vast majority of gene flow originated from sample sites within regions, with populations in southwest Britain being the predominant source of contemporary exogenous genetic variants for the populations studied. Unsurprisingly, historical patterns of gene flow appeared more complex, though again southwest Britain appeared an important source of genetic variation for both species. Our findings have major conservation implications, particularly for E. verrucosa, a protected species in UK waters and listed by the IUCN as ‘Vulnerable’, and for the designation and management of European MPAs.We thank Natural England (project No. RP0286, contract No. SAE 03-02-146), the NERC (grant No. NE/L002434/1) and the University of Exeter for funding this research. Additional funding for sample collection, travel and microsatellite development was provided by the EU Framework 7 ASSEMBLE programme, agreement no. 227799, and NERC grant No. NBAF-362
- …
