19,058 research outputs found

    Evolution of the Protein Interaction Network of Budding Yeast: Role of the Protein Family Compatibility Constraint

    Full text link
    Understanding of how protein interaction networks (PIN) of living organisms have evolved or are organized can be the first stepping stone in unveiling how life works on a fundamental ground. Here we introduce a hybrid network model composed of the yeast PIN and the protein family interaction network. The essential ingredient of the model includes the protein family identity and its robustness under evolution, as well as the three previously proposed ones: gene duplication, divergence, and mutation. We investigate diverse structural properties of our model with parameter values relevant to yeast, finding that the model successfully reproduces the empirical data.Comment: 5 pages, 5 figures, 1 table. Title changed. Final version published in JKP

    Threshold cascades with response heterogeneity in multiplex networks

    Full text link
    Threshold cascade models have been used to describe spread of behavior in social networks and cascades of default in financial networks. In some cases, these networks may have multiple kinds of interactions, such as distinct types of social ties or distinct types of financial liabilities; furthermore, nodes may respond in different ways to in influence from their neighbors of multiple types. To start to capture such settings in a stylized way, we generalize a threshold cascade model to a multiplex network in which nodes follow one of two response rules: some nodes activate when, in at least one layer, a large enough fraction of neighbors are active, while the other nodes activate when, in all layers, a large enough fraction of neighbors are active. Varying the fractions of nodes following either rule facilitates or inhibits cascades. Near the inhibition regime, global cascades appear discontinuously as the network density increases; however, the cascade grows more slowly over time. This behavior suggests a way in which various collective phenomena in the real world could appear abruptly yet slowly.Comment: 7 pages, 6 figure

    Robustness of the avalanche dynamics in data packet transport on scale-free networks

    Full text link
    We study the avalanche dynamics in the data packet transport on scale-free networks through a simple model. In the model, each vertex is assigned a capacity proportional to the load with a proportionality constant 1+a1+a. When the system is perturbed by a single vertex removal, the load of each vertex is redistributed, followed by subsequent failures of overloaded vertices. The avalanche size depends on the parameter aa as well as which vertex triggers it. We find that there exists a critical value aca_c at which the avalanche size distribution follows a power law. The critical exponent associated with it appears to be robust as long as the degree exponent is between 2 and 3, and is close in value to that of the distribution of the diameter changes by single vertex removal.Comment: 5 pages, 7 figures, final version published in PR

    Internet data packet transport: from global topology to local queueing dynamics

    Get PDF
    We study structural feature and evolution of the Internet at the autonomous systems level. Extracting relevant parameters for the growth dynamics of the Internet topology, we construct a toy model for the Internet evolution, which includes the ingredients of multiplicative stochastic evolution of nodes and edges and adaptive rewiring of edges. The model reproduces successfully structural features of the Internet at a fundamental level. We also introduce a quantity called the load as the capacity of node needed for handling the communication traffic and study its time-dependent behavior at the hubs across years. The load at hub increases with network size NN as N1.8\sim N^{1.8}. Finally, we study data packet traffic in the microscopic scale. The average delay time of data packets in a queueing system is calculated, in particular, when the number of arrival channels is scale-free. We show that when the number of arriving data packets follows a power law distribution, nλ\sim n^{-\lambda}, the queue length distribution decays as n1λn^{1-\lambda} and the average delay time at the hub diverges as N(3λ)/(γ1)\sim N^{(3-\lambda)/(\gamma-1)} in the NN \to \infty limit when 2<λ<32 < \lambda < 3, γ\gamma being the network degree exponent.Comment: 5 pages, 4 figures, submitted to International Journal of Bifurcation and Chao

    Classification of scale-free networks

    Full text link
    While the emergence of a power law degree distribution in complex networks is intriguing, the degree exponent is not universal. Here we show that the betweenness centrality displays a power-law distribution with an exponent \eta which is robust and use it to classify the scale-free networks. We have observed two universality classes with \eta \approx 2.2(1) and 2.0, respectively. Real world networks for the former are the protein interaction networks, the metabolic networks for eukaryotes and bacteria, and the co-authorship network, and those for the latter one are the Internet, the world-wide web, and the metabolic networks for archaea. Distinct features of the mass-distance relation, generic topology of geodesics and resilience under attack of the two classes are identified. Various model networks also belong to either of the two classes while their degree exponents are tunable.Comment: 6 Pages, 6 Figures, 1 tabl

    Betweenness centrality correlation in social networks

    Full text link
    Scale-free (SF) networks exhibiting a power-law degree distribution can be grouped into the assortative, dissortative and neutral networks according to the behavior of the degree-degree correlation coefficient. Here we investigate the betweenness centrality (BC) correlation for each type of SF networks. While the BC-BC correlation coefficients behave similarly to the degree-degree correlation coefficients for the dissortative and neutral networks, the BC correlation is nontrivial for the assortative ones found mainly in social networks. The mean BC of neighbors of a vertex with BC gig_i is almost independent of gig_i, implying that each person is surrounded by almost the same influential environments of people no matter how influential the person is.Comment: 4 pages, 4 figures, 1 tabl
    corecore