337 research outputs found
On the p-length of some finite p-soluble groups
The main aim of this paper is to give structural information of a finite group of minimal order belonging to a subgroup-closed class of finite groups and whose p-length is greater than 1, p a prime number. Alternative proofs and improvements of recent results about the influence of minimal p-subgroups on the p-nilpotence and p-length of a finite group arise as consequences of our study
A simple analytical method for heterogeneity corrections in low dose rate prostate brachytherapy
In low energy brachytherapy, the presence of tissue heterogeneities contributes significantly to the discrepancies observed between treatment plan and delivered dose. In this work, we present a simplified analytical dose calculation algorithm for heterogeneous tissue. We compare it with Monte Carlo computations and assess its suitability for integration in clinical treatment planning systems. The algorithm, named as RayStretch, is based on the classic equivalent path length method and TG-43 reference data. Analytical and Monte Carlo dose calculations using Penelope2008 are compared for a benchmark case: a prostate patient with calcifications. The results show a remarkable agreement between simulation and algorithm, the latter having, in addition, a high calculation speed. The proposed analytical model is compatible with clinical real-time treatment planning systems based on TG-43 consensus datasets for improving dose calculation and treatment quality in heterogeneous tissue. Moreover, the algorithm is applicable for any type of heterogeneities
Sensitivity of a tonne-scale NEXT detector for neutrinoless double beta decay searches
The Neutrino Experiment with a Xenon TPC (NEXT) searches for the neutrinoless
double-beta decay of Xe-136 using high-pressure xenon gas TPCs with
electroluminescent amplification. A scaled-up version of this technology with
about 1 tonne of enriched xenon could reach in less than 5 years of operation a
sensitivity to the half-life of neutrinoless double-beta decay decay better
than 1E27 years, improving the current limits by at least one order of
magnitude. This prediction is based on a well-understood background model
dominated by radiogenic sources. The detector concept presented here represents
a first step on a compelling path towards sensitivity to the parameter space
defined by the inverted ordering of neutrino masses, and beyond.Comment: 22 pages, 11 figure
Switching operation modes in the neocortex via cholinergic neuromodulation
In order to deal with the uncertainty in the world, our brains need to be able to flexibly switch between the exploration of new sensory representations and exploitation of previously acquired ones. This requires forming accurate estimations of what and how much something is expected. While modeling has allowed for the development of several ways to form predictions, how the brain could implement those is still under debate. Here, we recognize acetylcholine as one of the main neuromodulators driving learning based on uncertainty, promoting the exploration of new sensory representations. We identify its interactions with cortical inhibitory interneurons and derive a biophysically grounded computational model able to capture and learn from uncertainty. This model allows us to understand inhibition beyond gain control by suggesting that different interneuron subtypes either encode predictions or estimate their uncertainty, facilitating detection of unexpected cues. Moreover, we show how acetylcholine-like neuromodulation uniquely interacts with global and local sources of inhibition, disrupting perceptual certainty and promoting the rapid acquisition of new perceptual cues. Altogether, our model proposes that cortical acetylcholine favors sensory exploration over exploitation in a cortical microcircuit dedicated to estimating sensory uncertainty
Energy calibration of the NEXT-White detector with 1% resolution near Q ββ of 136Xe
Excellent energy resolution is one of the primary advantages of electroluminescent high-pressure xenon TPCs. These detectors are promising tools in searching for rare physics events, such as neutrinoless double-beta decay (ββ0ν), which require precise energy measurements. Using the NEXT-White detector, developed by the NEXT (Neutrino Experiment with a Xenon TPC) collaboration, we show for the first time that an energy resolution of 1% FWHM can be achieved at 2.6 MeV, establishing the present technology as the one with the best energy resolution of all xenon detectors for ββ0ν searches. [Figure not available: see fulltext.
The \u3cem\u3eChlamydomonas\u3c/em\u3e Genome Reveals the Evolution of Key Animal and Plant Functions
Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the ∼120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella
Measurement of radon-induced backgrounds in the NEXT double beta decay experiment
The measurement of the internal Rn activity in the NEXT-White
detector during the so-called Run-II period with Xe-depleted xenon is
discussed in detail, together with its implications for double beta decay
searches in NEXT. The activity is measured through the alpha production rate
induced in the fiducial volume by Rn and its alpha-emitting progeny.
The specific activity is measured to be ~mBq/m. Radon-induced electrons have also been
characterized from the decay of the Bi daughter ions plating out on the
cathode of the time projection chamber. From our studies, we conclude that
radon-induced backgrounds are sufficiently low to enable a successful NEXT-100
physics program, as the projected rate contribution should not exceed
0.1~counts/yr in the neutrinoless double beta decay sample.Comment: 28 pages, 10 figures, 6 tables. Version accepted for publication in
JHE
- …
