20,423 research outputs found
Crossover between the Dense Electron-Hole Phase and the BCS Excitonic Phase in Quantum Dots
Second order perturbation theory and a Lipkin-Nogami scheme combined with an
exact Monte Carlo projection after variation are applied to compute the
ground-state energy of electron-hole pairs confined in a
parabolic two-dimensional quantum dot. The energy shows nice scaling properties
as N or the confinement strength is varied. A crossover from the high-density
electron-hole phase to the BCS excitonic phase is found at a density which is
roughly four times the close-packing density of excitons.Comment: Improved variational and projection calculations. 17 pages, 3 ps
figures. Accepted for publication in Int. J. Mod. Phys.
Dental Treatment under General Anesthesia in Healthy and Medically Compromised/Developmentally Disabled Children: A Comparative Study
Aim: To compare the type, number of procedures and working time of dental treatment provided under dental general anesthesia (DGA) in healthy and medically compromised/developmentally disabled children (MCDD children). Design: This cross-sectional prospective study involved 80 children divided into two groups of 40 children each. Group 1 consisted of healthy and Group 2 consisted of MCDD children. Results: Healthy children needed more working time than MCDD children, the means being 161±7.9 and 84±5.7 minutes, respectively (P= 0.0001). Operative dentistry and endodontic treatments showed a significant statistical difference (P= 0.0001). The means of procedures were 17±5.0 for healthy children and 11±4.8 for MCDD children (P= 0.0001). Conclusions: Healthy children needed more extensive dental treatment than MCDD children under DGA. The information from this sample of Mexican children could be used as reference for determining trends both within a facility as well as in comparing facilities in cross-population studies
Active galactic nuclei synapses: X-ray versus optical classifications using artificial neural networks
(Abridged) Many classes of active galactic nuclei (AGN) have been defined
entirely throughout optical wavelengths while the X-ray spectra have been very
useful to investigate their inner regions. However, optical and X-ray results
show many discrepancies that have not been fully understood yet. The aim of
this paper is to study the "synapses" between the X-ray and optical
classifications.
For the first time, the new EFLUXER task allowed us to analyse broad band
X-ray spectra of emission line nuclei (ELN) without any prior spectral fitting
using artificial neural networks (ANNs). Our sample comprises 162 XMM-Newton/pn
spectra of 90 local ELN in the Palomar sample. It includes starbursts (SB),
transition objects (T2), LINERs (L1.8 and L2), and Seyferts (S1, S1.8, and S2).
The ANNs are 90% efficient at classifying the trained classes S1, S1.8, and
SB. The S1 and S1.8 classes show a wide range of S1- and S1.8-like components.
We suggest that this is related to a large degree of obscuration at X-rays. The
S1, S1.8, S2, L1.8, L2/T2/SB-AGN (SB with indications of AGN), and SB classes
have similar average X-ray spectra within each class, but these average spectra
can be distinguished from class to class. The S2 (L1.8) class is linked to the
S1.8 (S1) class with larger SB-like component than the S1.8 (S1) class. The L2,
T2, and SB-AGN classes conform a class in the X-rays similar to the S2 class
albeit with larger fractions of SB-like component. This SB-like component is
the contribution of the star-formation in the host galaxy, which is large when
the AGN is weak. An AGN-like component seems to be present in the vast majority
of the ELN, attending to the non-negligible fraction of S1-like or S1.8-like
component. This trained ANN could be used to infer optical properties from
X-ray spectra in surveys like eRosita.Comment: 15 pages, 7 figures, accepted for publication in A&A. Appendix B only
in the full version of the paper here:
https://dl.dropboxusercontent.com/u/3484086/AGNSynapsis_OGM_online.pd
The Hayabusa Curation Facility at Johnson Space Center
The Japan Aerospace Exploration Agency (JAXA) Hayabusa spacecraft made contact with the asteroid 25143 Itokawa and collected regolith dust from Muses Sea region of smooth terrain [1]. The spacecraft returned to Earth with more than 10,000 grains ranging in size from just over 300 m to less than 10 m [2, 3]. These grains represent the only collection of material returned from an asteroid by a spacecraft. As part of the joint agreement between JAXA and NASA for the mission, 10% of the Hayabusa grains are being transferred to NASA for parallel curation and allocation. In order to properly receive process and curate these samples, a new curation facility was established at Johnson Space Center (JSC). Since the Hayabusa samples within the JAXA curation facility have been stored free from exposure to terrestrial atmosphere and contamination [4], one of the goals of the new NASA curation facility was to continue this treatment. An existing lab space at JSC was transformed into a 120 sq.ft. ISO class 4 (equivalent to the original class 10 standard) clean room. Hayabusa samples are stored, observed, processed, and packaged for allocation inside a stainless steel glove box under dry N2. Construction of the clean laboratory was completed in 2012. Currently, 25 Itokawa particles are lodged in NASA's Hayabusa Lab. Special care has been taken during lab construction to remove or contain materials that may contribute contaminant particles in the same size range as the Hayabusa grains. Several witness plates of various materials are installed around the clean lab and within the glove box to permit characterization of local contaminants at regular intervals by SEM and mass spectrometry, and particle counts of the lab environment are frequently acquired. Of particular interest is anodized aluminum, which contains copious sub-mm grains of a multitude of different materials embedded in its upper surface. Unfortunately the use of anodized aluminum was necessary in the construction of the clean room frame to strengthen it and eliminate corrosion and wear over time. All anodized aluminum interior to the lab was thus covered or replaced by minimally contaminating materials
Proper motions of the HH1 jet
We describe a new method for determining proper motions of extended objects,
and a pipeline developed for the application of this method. We then apply this
method to an analysis of four epochs of [S~II] HST images of the HH~1 jet
(covering a period of ~yr).
We determine the proper motions of the knots along the jet, and make a
reconstruction of the past ejection velocity time-variability (assuming
ballistic knot motions). This reconstruction shows an "acceleration" of the
ejection velocities of the jet knots, with higher velocities at more recent
times. This acceleration will result in an eventual merging of the knots in
~yr and at a distance of from the outflow source, close to
the present-day position of HH~1.Comment: 12 pages, 8 figure
- …
