1,879 research outputs found
Presenting in Virtual Worlds: An Architecture for a 3D Anthropomorphic Presenter
Multiparty-interaction technology is changing entertainment, education, and training. Deployed examples of such technology include embodied agents and robots that act as a museum guide, a news presenter, a teacher, a receptionist, or someone trying to sell you insurance, homes, or tickets. In all these cases, the embodied agent needs to explain and describe. This article describes the design of a 3D virtual presenter that uses different output channels (including speech and animation of posture, pointing, and involuntary movements) to present and explain. The behavior is scripted and synchronized with a 2D display containing associated text and regions (slides, drawings, and paintings) at which the presenter can point. This article is part of a special issue on interactive entertainment
Stimulated wave of polarization in spin chains
Stimulated wave of polarization, triggered by a flip of a single spin,
presents a simple model of quantum amplification. Previously, it has been found
that such wave can be excited in a 1D Ising chain with nearest-neighbor
interactions, irradiated by a weak resonant transverse field. Here we explore
models with more realistic Hamiltonians, in particular, with natural
dipole-dipole interactions. Results of simulations for 1D spin chains and rings
with up to nine spins are presented.Comment: 15 pages, 5 figure
Impeded Growth of Magnetic Flux Bubbles in the Intermediate State Pattern of Type I Superconductors
Normal state bubble patterns in Type I superconducting Indium and Lead slabs
are studied by the high resolution magneto-optical imaging technique. The size
of bubbles is found to be almost independent of the long-range interaction
between the normal state domains. Under bubble diameter and slab thickness
proper scaling, the results gather onto a single master curve. On this basis,
in the framework of the "current-loop" model [R.E. Goldstein, D.P. Jackson and
A.T. Dorsey, Phys. Rev. Lett. 76, 3818 (1996)], we calculate the equilibrium
diameter of an isolated bubble resulting from the competition between the
Biot-and-Savart interaction of the Meissner current encircling the bubble and
the superconductor-normal interface energy. A good quantitative agreement with
the master curve is found over two decades of the magnetic Bond number. The
isolation of each bubble in the superconducting matrix and the existence of a
positive interface energy are shown to preclude any continuous size variation
of the bubbles after their formation, contrary to the prediction of mean-field
models.Comment: \'{e}quipe Nanostructures Quantique
Balancing adaptivity and customisation : in search of sustainable personalisation in cultural heritage
Personalisation for cultural heritage aims at delivering to visitors the right stories at the right time. Our endeavour to determine which features to use for adaptation starts from acknowledging what forms of personalisation curators value as most meaningful. Working in collaboration with curators we have explored the different features that must be taken into account: some are related to the content (multiple interpretation layers), others to the context of delivery (where and when), but some are idiosyncratic (“match my mood”, “something that is relevant to my life”). The findings reveal that a sustainable personalization needs to accurately balance: (i) support to curators in customising stories to different visitors; (ii) algorithms for the system to dynamically model aspects of the visit and instantiate the correct behaviour; and (iii) an active role for visitors to choose the type of experience they would like to have today
The Mechanical Coupling of Fluid-Filled Granular Material Under Shear
The coupled mechanics of fluid-filled granular media controls the physics of many Earth systems, for example saturated soils, fault gouge, and landslide shear zones. It is well established that when the pore fluid pressure rises, the shear resistance of fluid-filled granular systems decreases, and, as a result, catastrophic events such as soil liquefaction, earthquakes, and accelerating landslides may be triggered. Alternatively, when the pore pressure drops, the shear resistance of these geosystems increases. Despite the great importance of the coupled mechanics of grain-fluid systems, the basic physics that controls this coupling is far from understood. Fundamental questions that must be addressed include: what are the processes that control pore fluid pressurization and depressurization in response to deformation of the granular skeleton? and how do variations of pore pressure affect the mechanical strength of the grains skeleton? To answer these questions, a formulation for the pore fluid pressure and flow has been developed from mass and momentum conservation, and is coupled with a granular dynamics algorithm that solves the grain dynamics, to form a fully coupled model. The pore fluid formulation reveals that the evolution of pore pressure obeys viscoelastic rheology in response to pore space variations. Under undrained conditions elastic-like behavior dominates and leads to a linear relationship between pore pressure and overall volumetric strain. Viscous-like behavior dominates under well-drained conditions and leads to a linear relationship between pore pressure and volumetric strain rate. Numerical simulations reveal the possibility of liquefaction under drained and initially over-compacted conditions, which were often believed to be resistant to liquefaction. Under such conditions liquefaction occurs during short compactive phases that punctuate the overall dilative trend. In addition, the previously recognized generation of elevated pore pressure under undrained compactive conditions is observed. Simulations also show that during liquefaction events stress chains are detached, the external load becomes completely supported by the pressurized pore fluid, and shear resistance vanishe
A Versatile and Reproducible Multi-Frequency Electrical Impedance Tomography System
A highly versatile Electrical Impedance Tomography (EIT) system, nicknamed the ScouseTom, has been developed. The system allows control over current amplitude, frequency, number of electrodes, injection protocol and data processing. Current is injected using a Keithley 6221 current source, and voltages are recorded with a 24-bit EEG system with minimum bandwidth of 3.2 kHz. Custom PCBs interface with a PC to control the measurement process, electrode addressing and triggering of external stimuli. The performance of the system was characterised using resistor phantoms to represent human scalp recordings, with an SNR of 77.5 dB, stable across a four hour recording and 20 Hz to 20 kHz. In studies of both haeomorrhage using scalp electrodes, and evoked activity using epicortical electrode mats in rats, it was possible to reconstruct images matching established literature at known areas of onset. Data collected using scalp electrode in humans matched known tissue impedance spectra and was stable over frequency. The experimental procedure is software controlled and is readily adaptable to new paradigms. Where possible, commercial or open-source components were used, to minimise the complexity in reproduction. The hardware designs and software for the system have been released under an open source licence, encouraging contributions and allowing for rapid replication
Multiple Quantum NMR Dynamics in Dipolar Ordered Spin Systems
We investigate analytically and numerically the Multiple Quantum (MQ) NMR
dynamics in systems of nuclear spins 1/2 coupled by the dipole-dipole
interactions in the case of the dipolar ordered initial state. We suggest two
different methods of MQ NMR. One of them is based on the measurement of the
dipolar temperature in the quasi-equilibrium state which establishes after the
time of order T2 after the MQ NMR experiment. The other method uses an
additional resonance 45^0 -pulse after the preparation period of the standard
MQ NMR experiment in solids. Many-spin clusters and correlations are created
faster in such experiments than in the usual MQ NMR experiments and can be used
for the investigation of many-spin dynamics of nuclear spins in solids.Comment: 11 pages, 3 figures. accepted for publication in Physical Review
Direct Measurement of the System-Environment Coupling as a Tool For Understanding Decoherence and Dynamical Decoupling
Decoherence is a major obstacle to any practical implementation of quantum
information processing. One of the leading strategies to reduce decoherence is
dynamical decoupling --- the use of an external field to average out the effect
of the environment. The decoherence rate under any control field can be
calculated if the spectrum of the coupling to the environment is known. We
present a direct measurement of the bath coupling spectrum in an ensemble of
optically trapped ultracold atoms, by applying a spectrally narrow-band control
field. The measured spectrum follows a Lorentzian shape at low frequencies, but
exhibits non-monotonic features at higher frequencies due to the oscillatory
motion of the atoms in the trap. These features agree with our analytical
models and numerical Monte-Carlo simulations of the collisional bath. From the
inferred bath-coupling spectrum, we predict the performance of well-known
dynamical decoupling sequences: CPMG, UDD and CDD. We then apply these
sequences in experiment and compare the results to predictions, finding good
agreement in the weak-coupling limit. Thus, our work establishes experimentally
the validity of the overlap integral formalism, and is an important step
towards the implementation of an optimal dynamical decoupling sequence for a
given measured bath spectrum.Comment: 9 pages, 6 figure
- …
