69 research outputs found
Autofluorescence lifetime augmented reality as a means for real-time robotic surgery guidance in human patients.
Due to loss of tactile feedback the assessment of tumor margins during robotic surgery is based only on visual inspection, which is neither significantly sensitive nor specific. Here we demonstrate time-resolved fluorescence spectroscopy (TRFS) as a novel technique to complement the visual inspection of oral cancers during transoral robotic surgery (TORS) in real-time and without the need for exogenous contrast agents. TRFS enables identification of cancerous tissue by its distinct autofluorescence signature that is associated with the alteration of tissue structure and biochemical profile. A prototype TRFS instrument was integrated synergistically with the da Vinci Surgical robot and the combined system was validated in swine and human patients. Label-free and real-time assessment and visualization of tissue biochemical features during robotic surgery procedure, as demonstrated here, not only has the potential to improve the intraoperative decision making during TORS but also other robotic procedures without modification of conventional clinical protocols
Design principles governing the development of theranostic anticancer agents and their nanoformulations with photoacoustic properties
The unmet need to develop novel approaches for cancer diagnosis and treatment has led to the evolution of theranostic agents, which usually include, in addition to the anticancer drug, an imaging agent based mostly on fluorescent agents. Over the past few years, a non-invasive photoacoustic imaging modality has been effectively integrated into theranostic agents. Herein, we shed light on the design principles governing the development of theranostic agents with photoacoustic properties, which can be formulated into nanocarriers to enhance their potency. Specifically, we provide an extensive analysis of their individual constituents including the imaging dyes, drugs, linkers, targeting moieties, and their formulation into nanocarriers. Along these lines, we present numerous relevant paradigms. Finally, we discuss the clinical relevance of the specific strategy, as also the limitations and future perspectives, and through this review, we envisage paving the way for the development of theranostic agents endowed with photoacoustic properties as effective anticancer medicines
Recommended from our members
Autofluorescence lifetime augmented reality as a means for real-time robotic surgery guidance in human patients
Due to loss of tactile feedback the assessment of tumor margins during robotic surgery is based only on visual inspection, which is neither significantly sensitive nor specific. Here we demonstrate time-resolved fluorescence spectroscopy (TRFS) as a novel technique to complement the visual inspection of oral cancers during transoral robotic surgery (TORS) in real-time and without the need for exogenous contrast agents. TRFS enables identification of cancerous tissue by its distinct autofluorescence signature that is associated with the alteration of tissue structure and biochemical profile. A prototype TRFS instrument was integrated synergistically with the da Vinci Surgical robot and the combined system was validated in swine and human patients. Label-free and real-time assessment and visualization of tissue biochemical features during robotic surgery procedure, as demonstrated here, not only has the potential to improve the intraoperative decision making during TORS but also other robotic procedures without modification of conventional clinical protocols
Toward Mechanochromic Soft Material‐Based Visual Feedback for Electronics‐Free Surgical Effectors
: A chromogenically reversible, mechanochromic pressure sensor is integrated into a mininvasive surgical grasper compatible with the da Vinci robotic surgical system. The sensorized effector, also featuring two soft-material jaws, encompasses a mechanochromic polymeric inset doped with functionalized spiropyran (SP) molecule, designed to activate mechanochromism at a chosen pressure and providing a reversible color change. Considering such tools are systematically in the visual field of the operator during surgery, color change of the mechanochromic effector can help avoid tissue damage. No electronics is required to control the devised visual feedback. SP-doping of polydimethylsiloxane (2.5:1 prepolymer/curing agent weight ratio) permits to modulate the mechanochromic activation pressure, with lower values around 1.17 MPa for a 2% wt. SP concentration, leading to a shorter chromogenic recovery time of 150 s at room temperature (25 °C) under green light illumination. Nearly three-times shorter recovery time is observed at body temperature (37 °C). To the best of knowledge, this study provides the first demonstration of mechanochromic materials in surgery, in particular to sensorize unpowered surgical effectors, by avoiding dramatic increases in tool complexity due to additional electronics, thus fostering their application. The proposed sensing strategy can be extended to further tools and scopes
Autofluorescence lifetime augmented reality as a means for real-time robotic surgery guidance in human patients.
Image Segmentation for Biomedical Applications Based on Alternating Sequential Filtering and Watershed Transformation
Image segmentation for biomedical applications based on alternating sequential filtering and watershed transformation
A coupled radiative transfer and diffusion approximation model for the solution of the forward problem and the a-priori fluorophore distribution estimation in fluorescence imaging
A three-dimensional finite elements approach for the coupled radiative transfer equation and diffusion approximation modeling in fluorescence imaging
- …
