806 research outputs found
Fast Single-Charge Sensing with an rf Quantum Point Contact
We report high-bandwidth charge sensing measurements using a GaAs quantum
point contact embedded in a radio frequency impedance matching circuit
(rf-QPC). With the rf-QPC biased near pinch-off where it is most sensitive to
charge, we demonstrate a conductance sensitivity of 5x10^(-6) e^(2)/h Hz^(-1/2)
with a bandwidth of 8 MHz. Single-shot readout of a proximal few-electron
double quantum dot is investigated in a mode where the rf-QPC back-action is
rapidly switched.Comment: related papers available at http://marcuslab.harvard.ed
Antiferromagnetic s-d exchange coupling in GaMnAs
Measurements of coherent electron spin dynamics in
Ga(1-x)Mn(x)As/Al(0.4)Ga(0.6)As quantum wells with 0.0006% < x < 0.03% show an
antiferromagnetic (negative) exchange bewteen s-like conduction band electrons
and electrons localized in the d-shell of the Mn2+ impurities. The magnitude of
the s-d exchange parameter, N0 alpha, varies as a function of well width
indicative of a large and negative contribution due to kinetic exchange. In the
limit of no quantum confinement, N0 alpha extrapolates to -0.09 +/- 0.03 eV
indicating that antiferromagnetic s-d exchange is a bulk property of GaMnAs.
Measurements of the polarization-resolved photoluminescence show strong
discrepancy from a simple model of the exchange enhanced Zeeman splitting,
indicative of additional complexity in the exchange split valence band.Comment: 5 pages, 4 figures and one action figur
Electron spin interferometry using a semiconductor ring structure
A ring structure fabricated from GaAs is used to achieve interference of the
net spin polarization of conduction band electrons. Optically polarized spins
are split into two packets by passing through two arms of the ring in the
diffusive transport regime. Optical pumping with circularly polarized light on
one arm establishes dynamic nuclear polarization which acts as a local
effective magnetic field on electron spins due to the hyperfine interaction.
This local field causes one spin packet to precess faster than the other,
thereby controlling the spin interference when the two packets are combined.Comment: 4 pages, 2 figure
Local oxidation of Ga[Al]As heterostructures with modulated tip-sample voltages
Nanolithography based on local oxidation with a scanning force microscope has
been performed on an undoped GaAs wafer and a Ga[Al]As heterostructure with an
undoped GaAs cap layer and a shallow two-dimensional electron gas. The oxide
growth and the resulting electronic properties of the patterned structures are
compared for constant and modulated voltage applied to the conductive tip of
the scanning force microscope. All the lithography has been performed in
non-contact mode. Modulating the applied voltage enhances the aspect ratio of
the oxide lines, which significantly strengthens the insulating properties of
the lines on GaAs. In addition, the oxidation process is found to be more
reliable and reproducible. Using this technique, a quantum point contact and a
quantum wire have been defined and the electronic stability, the confinement
potential and the electrical tunability are demonstrated to be similar to the
oxidation with constant voltage.Comment: 7 pages, 7 figures, accepted by J. Appl. Phy
Time-Resolved Detection of Individual Electrons in a Quantum Dot
We present measurements on a quantum dot and a nearby, capacitively coupled,
quantum point contact used as a charge detector. With the dot being weakly
coupled to only a single reservoir, the transfer of individual electrons onto
and off the dot can be observed in real time in the current signal from the
quantum point contact. From these time-dependent traces, the quantum mechanical
coupling between dot and reservoir can be extracted quantitatively. A similar
analysis allows the determination of the occupation probability of the dot
states.Comment: 3 pages, 3 figure
Cotunneling Spectroscopy in Few-Electron Quantum Dots
Few-electron quantum dots are investigated in the regime of strong tunneling
to the leads. Inelastic cotunneling is used to measure the two-electron
singlet-triplet splitting above and below a magnetic field driven
singlet-triplet transition. Evidence for a non-equilibrium two-electron
singlet-triplet Kondo effect is presented. Cotunneling allows orbital
correlations and parameters characterizing entanglement of the two-electron
singlet ground state to be extracted from dc transport.Comment: related papers available at http://marcuslab.harvard.ed
Rapid Single-Shot Measurement of a Singlet-Triplet Qubit
We report repeated single-shot measurements of the two-electron spin state in
a GaAs double quantum dot. The readout scheme allows measurement with fidelity
above 90% with a 7 microsecond cycle time. Hyperfine-induced precession between
singlet and triplet states of the two-electron system are directly observed, as
nuclear Overhauser fields are quasi-static on the time scale of the measurement
cycle. Repeated measurements on millisecond to second time scales reveal
evolution of the nuclear environment.Comment: supplemental material at
http://marcuslab.harvard.edu/papers/single_shot_sup.pd
Finite bias charge detection in a quantum dot
We present finite bias measurements on a quantum dot coupled capacitively to
a quantum point contact used as a charge detector. The transconductance signal
measured in the quantum point contact at finite dot bias shows structure which
allows us to determine the time-averaged charge on the dot in the non-blockaded
regime and to estimate the coupling of the dot to the leads.Comment: 6 pages, 4 figure
Fluctuation and Commensurability Effect of Exciton Density Wave
At low temperatures, indirect excitons formed at the in-plane electron-hole
interface in a coupled quantum well structure undergo a spontaneous transition
into a spatially modulated state. We report on the control of the instability
wavelength, measurement of the dynamics of the exciton emission pattern, and
observation of the fluctuation and commensurability effect of the exciton
density wave. We found that fluctuations are strongly suppressed when the
instability wavelength is commensurate with defect separation along the exciton
density wave. The commensurability effect is also found in numerical
simulations within the model describing the exciton density wave in terms of an
instability due to stimulated processes
- …
