812 research outputs found
TimeMachine: Timeline Generation for Knowledge-Base Entities
We present a method called TIMEMACHINE to generate a timeline of events and
relations for entities in a knowledge base. For example for an actor, such a
timeline should show the most important professional and personal milestones
and relationships such as works, awards, collaborations, and family
relationships. We develop three orthogonal timeline quality criteria that an
ideal timeline should satisfy: (1) it shows events that are relevant to the
entity; (2) it shows events that are temporally diverse, so they distribute
along the time axis, avoiding visual crowding and allowing for easy user
interaction, such as zooming in and out; and (3) it shows events that are
content diverse, so they contain many different types of events (e.g., for an
actor, it should show movies and marriages and awards, not just movies). We
present an algorithm to generate such timelines for a given time period and
screen size, based on submodular optimization and web-co-occurrence statistics
with provable performance guarantees. A series of user studies using Mechanical
Turk shows that all three quality criteria are crucial to produce quality
timelines and that our algorithm significantly outperforms various baseline and
state-of-the-art methods.Comment: To appear at ACM SIGKDD KDD'15. 12pp, 7 fig. With appendix. Demo and
other info available at http://cs.stanford.edu/~althoff/timemachine
A Testable Conspiracy: Simulating Baryonic Effects on Self-interacting Dark Matter Halos
We investigate the response of self-interacting dark matter (SIDM) halos to the growth of galaxy potentials using idealized simulations, with each run in tandem with collisionless cold dark matter (CDM). We find that if the stellar potential strongly dominates in the central parts of a galaxy, then SIDM halos can be as dense as CDM halos on observable scales. For extreme cases, core collapse can occur, leading to SIDM halos that are denser and cuspier than their CDM counterparts. If the stellar potential is not dominant, then SIDM halos retain isothermal cores with densities far below CDM predictions. When a disk is present, the inner SIDM halo becomes more flattened in the disk plane than the CDM halo. These results are in excellent quantitative agreement with the predictions of Kaplinghat et al. We also simulated a cluster halo with a central stellar distribution similar to the brightest central galaxy of the cluster A2667. An SIDM halo simulated with the cross-section over mass σ/m =0.1 cm^2 g^(-1) provides a good match to the measured dark matter (DM) density profile, while an adiabatically contracted CDM halo is denser and cuspier. The profile of the same halo simulated with σ/m = 0.5 cm^2 g^(-1) is not dense enough. Our findings are in agreement with previous results that σ/m\ ≳ 0.1 cm^2 g^(1-) is disfavored for DM collision velocities above about 1500 km s^(−1). More generally, the interaction between baryonic potentials and SIDM densities offers new directions for constraining SIDM cross-sections in galaxies where baryons are dynamically important
The VLT-FLAMES Tarantula Survey XVIII. Classifications and radial velocities of the B-type stars
We present spectral classifications for 438 B-type stars observed as part of the VLT-FLAMES Tarantula Survey (VFTS) in the 30 Doradus region of the Large Magellanic Cloud. Radial velocities are provided for 307 apparently single stars, and for 99 targets with radial-velocity variations which are consistent with them being spectroscopic binaries. We investigate the spatial distribution of the radial velocities across the 30 Dor region, and use the results to identify candidate runaway stars. Excluding potential runaways and members of two older clusters in the survey region (SL 639 and Hodge 301), we determine a systemic velocity for 30 Dor of 271.6 ± 12.2 kms-1 from 273 presumed single stars. Employing a 3σ criterion we identify nine candidate runaway stars (2.9% of the single stars with radial-velocity estimates). The projected rotational velocities of the candidate runaways appear to be significantly different to those of the full B-type sample, with a strong preference for either large (≥345 kms-1) or small (≤65 kms-1) rotational velocities. Of the candidate runaways, VFTS 358 (classified B0.5: V) has the largest differential radial velocity (−106.9 ± 16.2 kms-1), and a preliminary atmospheric analysis finds a significantly enriched nitrogen abundance of 12 + log (N/H) ≳ 8.5. Combined with a large rotational velocity (ve sin i = 345 ± 22 kms-1), this is suggestive of past binary interaction for this star
Multilingual Semantic Linking for Video Streams: Making "Ideas Worth Sharing" More Accessible
- …
