562 research outputs found
Capillary Waves at Liquid/Vapor Interfaces: A Molecular Dynamics Simulation
Evidence for capillary waves at a liquid/vapor interface are presented from
extensive molecular dynamics simulations of a system containing up to 1.24
million Lennard-Jones particles. Careful measurements show that the total
interfacial width depends logarithmically on , the length of the
simulation cell parallel to the interface, as predicted theoretically. The
strength of the divergence of the interfacial width on depends
inversely on the surface tension . This allows us to measure
two ways since can also be obtained from the difference in the
pressure parallel and perpendicular to the interface. These two independent
measures of agree provided that the interfacial order parameter
profile is fit to an error function and not a hyperbolic tangent, as often
assumed. We explore why these two common fitting functions give different
results for
Coating thickness and coverage effects on the forces between silica nanoparticles in water
The structure and interactions of coated silica nanoparticles have been
studied in water using molecular dynamics simulations. For 5 nm diameter
amorphous silica nanoparticles we studied the effects of varying the chain
length and grafting density of polyethylene oxide (PEO) on the nanoparticle
coating's shape and on nanoparticle-nanoparticle effective forces. For short
ligands of length and repeat units, the coatings are radially
symmetric while for longer chains () the coatings are highly
anisotropic. This anisotropy appears to be governed primarily by chain length,
with coverage playing a secondary role. For the largest chain lengths
considered, the strongly anisotropic shape makes fitting to a simple radial
force model impossible. For shorter ligands, where the coatings are isotropic,
we found that the force between pairs of nanoparticles is purely repulsive and
can be fit to the form where is the separation
between the center of the nanoparticles, is the radius of the
silica core, and is measured to be between 2.3 and 4.1.Comment: 20 pages, 6 figure
Rheology of Ring Polymer Melts: From Linear Contaminants to Ring/Linear Blends
Ring polymers remain a major challenge to our current understanding of
polymer dynamics. Experimental results are difficult to interpret because of
the uncertainty in the purity and dispersity of the sample. Using both
equilibrium and non-equilibrium molecular dynamics simulations we have
systematically investigated the structure, dynamics and rheology of perfectly
controlled ring/linear polymer blends with chains of such length and
flexibility that the number of entanglements is up to about 14 per chain, which
is comparable to experimental systems examined in the literature. The smallest
concentration at which linear contaminants increase the zero-shear viscosity of
a ring polymer melt of these chain lengths by 10% is approximately one-fifth of
their overlap concentration. When the two architectures are present in equal
amounts the viscosity of the blend is approximately twice as large as that of
the pure linear melt. At this concentration the diffusion coefficient of the
rings is found to decrease dramatically, while the static and dynamic
properties of the linear polymers are mostly unaffected. Our results are
supported by a primitive path analysis.Comment: 5 pages, 4 figures, accepted by PR
Velocity Correlations in Dense Gravity Driven Granular Chute Flow
We report numerical results for velocity correlations in dense,
gravity-driven granular flow down an inclined plane. For the grains on the
surface layer, our results are consistent with experimental measurements
reported by Pouliquen. We show that the correlation structure within planes
parallel to the surface persists in the bulk. The two-point velocity
correlation function exhibits exponential decay for small to intermediate
values of the separation between spheres. The correlation lengths identified by
exponential fits to the data show nontrivial dependence on the averaging time
\dt used to determine grain velocities. We discuss the correlation length
dependence on averaging time, incline angle, pile height, depth of the layer,
system size and grain stiffness, and relate the results to other length scales
associated with the rheology of the system. We find that correlation lengths
are typically quite small, of the order of a particle diameter, and increase
approximately logarithmically with a minimum pile height for which flow is
possible, \hstop, contrary to the theoretical expectation of a proportional
relationship between the two length scales.Comment: 21 pages, 16 figure
Portable implementation of a quantum thermal bath for molecular dynamics simulations
Recently, Dammak and coworkers (H. Dammak, Y. Chalopin, M. Laroche, M.
Hayoun, and J.J. Greffet. Quantumthermal bath for molecular dynamics
simulation. Phys. Rev. Lett., 103:190601, 2009.) proposed that the quantum
statistics of vibrations in condensed systems at low temperature could be
simulated by running molecular dynamics simulations in the presence of a
colored noise with an appropriate power spectral density. In the present
contribution, we show how this method can be implemented in a flexible manner
and at a low computational cost by synthesizing the corresponding noise 'on the
fly'. The proposed algorithm is tested for a simple harmonic chain as well as
for a more realistic model of aluminium crystal. The energy and Debye-Waller
factor are shown to be in good agreement with those obtained from harmonic
approximations based on the phonon spectrum of the systems. The limitations of
the method associated with anharmonic effects are also briefly discussed. Some
perspectives for disordered materials and heat transfer are considered.Comment: Accepted for publication in Journal of Statistical Physic
Dynamic surface decoupling in a sheared polymer melt
We propose that several mechanisms contribute to friction in a polymer melt
adsorbed at a structured surface. The first one is the well known
disentanglement of bulk polymer chains from the surface layer. However, if the
surface is ideal at the atomic scale, the adsorbed parts of polymer chains can
move along the equipotential lines of the surface potential. This gives rise to
a strong slippage of the melt. For high shear rates chains partially desorb.
However, the friction force on adsorbed chains increases, resulting in
quasi-stick boundary conditions. We propose that the adsorbed layers can be
efficiently used to adjust the friction force between the polymer melt and the
surface
Scaling of Selfavoiding Tethered Membranes: 2-Loop Renormalization Group Results
The scaling properties of selfavoiding polymerized membranes are studied
using renormalization group methods. The scaling exponent \nu is calculated for
the first time at two loop order. \nu is found to agree with the Gaussian
variational estimate for large space dimension d and to be close to the Flory
estimate for d=3.Comment: 4 pages, RevTeX + 20 .eps file
Stress Relaxation in Entangled Polymer Melts
We present an extensive set of simulation results for the stress relaxation
in equilibrium and step-strained bead-spring polymer melts. The data allow us
to explore the chain dynamics and the shear relaxation modulus, , into
the plateau regime for chains with entanglements and into the terminal
relaxation regime for . Using the known (Rouse) mobility of unentangled
chains and the melt entanglement length determined via the primitive path
analysis of the microscopic topological state of our systems, we have performed
parameter -free tests of several different tube models. We find excellent
agreement for the Likhtman-McLeish theory using the double reptation
approximation for constraint release, if we remove the contribution of
high-frequency modes to contour length fluctuations of the primitive chain.Comment: 5 pages, 3 figure
Molecular Dynamics Simulation Study of Nonconcatenated Ring Polymers in a Melt: I. Statics
Molecular dynamics simulations were conducted to investigate the structural
properties of melts of nonconcatenated ring polymers and compared to melts of
linear polymers. The longest rings were composed of N=1600 monomers per chain
which corresponds to roughly 57 entanglement lengths for comparable linear
polymers. For the rings, the radius of gyration squared was found to scale as N
to the 4/5 power for an intermediate regime and N to the 2/3 power for the
larger rings indicating an overall conformation of a crumpled globule. However,
almost all beads of the rings are "surface beads" interacting with beads of
other rings, a result also in agreement with a primitive path analysis
performed in the following paper (DOI: 10.1063/1.3587138). Details of the
internal conformational properties of the ring and linear polymers as well as
their packing are analyzed and compared to current theoretical models.Comment: 15 pages, 14 figure
Structure Function of Polymer Nematic Liquid Crystals: A Monte Carlo Simulation
We present a Monte Carlo simulation of a polymer nematic for varying volume
fractions, concentrating on the structure function of the sample. We achieve
nematic ordering with stiff polymers made of spherical monomers that would
otherwise not form a nematic state. Our results are in good qualitative
agreement with theoretical and experimental predictions, most notably the
bowtie pattern in the static structure function.Comment: 10 pages, plain TeX, macros included, 3 figures available from
archive. Published versio
- …
