679 research outputs found
Phonon-assisted tunneling in interacting suspended single wall carbon nanotubes
Transport in suspended metallic single wall carbon nanotubes in the presence
of strong electron-electron interaction is investigated. We consider a tube of
finite length and discuss the effects of the coupling of the electrons to the
deformation potential associated to the acoustic stretching and breathing
modes. Treating the interacting electrons within the framework of the Luttinger
liquid model, the low-energy spectrum of the coupled electron-phonon system is
evaluated. The discreteness of the spectrum is reflected in the differential
conductance which, as a function of the applied bias voltage, exhibits three
distinct families of peaks. The height of the phonon-assisted peaks is very
sensitive to the parameters. The phonon peaks are best observed when the system
is close to the Wentzel-Bardeen singularity.Comment: 14 pages, 3 figure
Thermally induced subgap features in the cotunneling spectroscopy of a carbon nanotube
We report on nonlinear cotunneling spectroscopy of a carbon nanotube quantum
dot coupled to Nb superconducting contacts. Our measurements show rich subgap
features in the stability diagram which become more pronounced as the
temperature is increased. Applying a transport theory based on the
Liouville-von Neumann equation for the density matrix, we show that the
transport properties can be attributed to processes involving sequential as
well as elastic and inelastic cotunneling of quasiparticles thermally excited
across the gap. In particular, we predict thermal replicas of the elastic and
inelastic cotunneling peaks, in agreement with our experimental results.Comment: 21 pages, 9 figures, submitted to New Journal of Physic
Phase diffusion as a model for coherent suppression of tunneling in the presence of noise
We study the stabilization of coherent suppression of tunneling in a driven
double-well system subject to random periodic function ``kicks''. We
model dissipation due to this stochastic process as a phase diffusion process
for an effective two-level system and derive a corresponding set of Bloch
equations with phase damping terms that agree with the periodically kicked
system at discrete times. We demonstrate that the ability of noise to localize
the system on either side of the double-well potenital arises from overdamping
of the phase of oscillation and not from any cooperative effect between the
noise and the driving field. The model is investigated with a square wave
drive, which has qualitatively similar features to the widely studied
cosinusoidal drive, but has the additional advantage of allowing one to derive
exact analytic expressions.Comment: 17 pages, 4 figures, submitted to Phys. Rev.
Driving-Induced Symmetry Breaking in the Spin-Boson System
A symmetric dissipative two-state system is asymptotically completely
delocalized independent of the initial state. We show that driving-induced
localization at long times can take place when both the bias and tunneling
coupling energy are harmonically modulated. Dynamical symmetry breaking on
average occurs when the driving frequencies are odd multiples of some reference
frequency. This effect is universal, as it is independent of the dissipative
mechanism. Possible candidates for an experimental observation are flux
tunneling in the variable barrier rf SQUID and magnetization tunneling in
magnetic molecular clusters.Comment: 4 pages, 4 figures, to be published in PR
Blocking transport resonances via Kondo entanglement in quantum dots
Many-body entanglement is at the heart of the Kondo effect, which has its
hallmark in quantum dots as a zero-bias conductance peak at low temperatures.
It signals the emergence of a conducting singlet state formed by a localized
dot degree of freedom and conduction electrons. Carbon nanotubes offer the
possibility to study the emergence of the Kondo entanglement by tuning
many-body correlations with a gate voltage. Here we quantitatively show an
undiscovered side of
Kondo correlations, which counterintuitively tend to block conduction
channels: inelastic cotunneling lines in the magnetospectrum of a carbon
nanotube strikingly disappear when tuning the gate voltage. Considering the
global \SUT\ \SUT\ symmetry of a carbon nanotube coupled to leads,
we find that only resonances involving flips of the Kramers pseudospins,
associated to this symmetry, are observed at temperatures and voltages below
the corresponding Kondo scale. Our results demonstrate the robust formation of
entangled many-body states with no net pseudospin.Comment: 9 pages, 4 figure
Direct observation of band-gap closure for a semiconducting carbon nanotube in a large parallel magnetic field
We have investigated the magnetoconductance of semiconducting carbon
nanotubes (CNTs) in pulsed, parallel magnetic fields up to 60 T, and report the
direct observation of the predicted band-gap closure and the reopening of the
gap under variation of the applied magnetic field. We also highlight the
important influence of mechanical strain on the magnetoconductance of the CNTs.Comment: 4 pages, 4 figure
Spectrum and Franck-Condon factors of interacting suspended single-wall carbon nanotubes
A low energy theory of suspended carbon nanotube quantum dots in weak
tunnelling coupling with metallic leads is presented. The focus is put on the
dependence of the spectrum and the Franck-Condon factors on the geometry of the
junction including several vibronic modes. The relative size and the relative
position of the dot and its associated vibrons strongly influence the
electromechanical properties of the system. A detailed analysis of the complete
parameters space reveals different regimes: in the short vibron regime the
tunnelling of an electron into the nanotube generates a plasmon-vibron
excitation while in the long vibron regime polaron excitations dominate the
scenario. The small, position dependent Franck-Condon couplings of the small
vibron regime convert into uniform, large couplings in the long vibron regime.
Selection rules for the excitations of the different plasmon-vibron modes via
electronic tunnelling events are also derived.Comment: 23 pages, 8 figures, new version according to the published on
Strong coupling theory for driven tunneling and vibrational relaxation
We investigate on a unified basis tunneling and vibrational relaxation in
driven dissipative multistable systems described by their N lowest lying
unperturbed levels. By use of the discrete variable representation we derive a
set of coupled non-Markovian master equations. We present analytical treatments
that describe the dynamics in the regime of strong system-bath coupling. Our
findings are corroborated by ``ab-initio'' real-time path integral
calculations.Comment: 4 LaTeX pages including 3 figure
Quantum Ratchets at High Temperatures
Using the continued-fraction method we solve the Caldeira-Leggett master
equation in the phase-space (Wigner) representation to study Quantum ratchets.
Broken spatial symmetry, irreversibility and periodic forcing allows for a net
current in these systems. We calculate this current as a function of the force
under adiabatic conditions. Starting from the classical limit we make the
system quantal. In the quantum regime tunnel events and over-barrier wave
reflection phenomena modify the classical result. Finally, using the
phase-space formalism we give some insights about the decoherence in these
systems.Comment: submitted to Physia E (proceedings of conference "Frontiers of
Quantum and Mesoscopic Thermodynamics", Prague 26-29 July 2004
Controlling decoherence of a two-level-atom in a lossy cavity
By use of external periodic driving sources, we demonstrate the possibility
of controlling the coherent as well as the decoherent dynamics of a two-level
atom placed in a lossy cavity.
The control of the coherent dynamics is elucidated for the phenomenon of
coherent destruction of tunneling (CDT), i.e., the coherent dynamics of a
driven two-level atom in a quantum superposition state can be brought
practically to a complete standstill. We study this phenomenon for different
initial preparations of the two-level atom. We then proceed to investigate the
decoherence originating from the interaction of the two-level atom with a lossy
cavity mode. The loss mechanism is described in terms of a microscopic model
that couples the cavity mode to a bath of harmonic field modes. A suitably
tuned external cw-laser field applied to the two-level atom slows down
considerably the decoherence of the atom. We demonstrate the suppression of
decoherence for two opposite initial preparations of the atomic state: a
quantum superposition state as well as the ground state. These findings can be
used to the effect of a proficient battling of decoherence in qubit
manipulation processes.Comment: 12 pages including 3 figures, submitted for publicatio
- …
