435 research outputs found

    Domain Growth, Wetting and Scaling in Porous Media

    Full text link
    The lattice Boltzmann (LB) method is used to study the kinetics of domain growth of a binary fluid in a number of geometries modeling porous media. Unlike the traditional methods which solve the Cahn-Hilliard equation, the LB method correctly simulates fluid properties, phase segregation, interface dynamics and wetting. Our results, based on lattice sizes of up to 4096×40964096\times 4096, do not show evidence to indicate the breakdown of late stage dynamical scaling, and suggest that confinement of the fluid is the key to the slow kinetics observed. Randomness of the pore structure appears unnecessary.Comment: 13 pages, latex, submitted to PR

    Educational outcomes in extremely preterm children : neuropsychological correlates and predictors of attainment

    Get PDF
    This study assessed the impact of extremely preterm birth on academic attainment at 11 years of age, investigated neuropsychological antecedents of attainment in reading and mathematics, and examined early predictors of educational outcomes. Children born extremely preterm had significantly poorer academic attainment and a higher prevalence of learning difficulties than their term peers. General cognitive ability and specific deficits in visuospatial skills or phoneme deletion at 6 years were predictive of mathematics and reading attainment at 11 years in both extremely preterm and term children. Phonological processing, attention, and executive functions at 6 years were also associated with academic attainment in children born extremely preterm. Furthermore, social factors, neonatal factors (necrotizing enterocolitis, breech delivery, abnormal cerebral ultrasound, early breast milk provision), and developmental factors at 30 months (head circumference, cognitive development), were independent predictors of educational outcomes at 11 years. Neonatal complications combined with assessments of early cognitive function provide moderate prediction for educational outcomes in children born extremely preterm

    A Lattice Boltzmann method for simulations of liquid-vapor thermal flows

    Full text link
    We present a novel lattice Boltzmann method that has a capability of simulating thermodynamic multiphase flows. This approach is fully thermodynamically consistent at the macroscopic level. Using this new method, a liquid-vapor boiling process, including liquid-vapor formation and coalescence together with a full coupling of temperature, is simulated for the first time.Comment: one gzipped tar file, 19 pages, 4 figure

    Lattice Boltzmann Simulation of Non-Ideal Fluids

    Full text link
    A lattice Boltzmann scheme able to model the hydrodynamics of phase separation and two-phase flow is described. Thermodynamic consistency is ensured by introducing a non-ideal pressure tensor directly into the collision operator. We also show how an external chemical potential can be used to supplement standard boundary conditions in order to investigate the effect of wetting on phase separation and fluid flow in confined geometries. The approach has the additional advantage of reducing many of the unphysical discretisation problems common to previous lattice Boltzmann methods.Comment: 11 pages, revtex, 4 Postscript figures, uuencode

    Hydrodynamic Spinodal Decomposition: Growth Kinetics and Scaling Functions

    Full text link
    We examine the effects of hydrodynamics on the late stage kinetics in spinodal decomposition. From computer simulations of a lattice Boltzmann scheme we observe, for critical quenches, that single phase domains grow asymptotically like tαt^{\alpha}, with α.66\alpha \approx .66 in two dimensions and α1.0\alpha \approx 1.0 in three dimensions, both in excellent agreement with theoretical predictions.Comment: 12 pages, latex, Physical Review B Rapid Communication (in press

    Is there life inside black holes?

    Full text link
    Bound inside rotating or charged black holes, there are stable periodic planetary orbits, which neither come out nor terminate at the central singularity. Stable periodic orbits inside black holes exist even for photons. These bound orbits may be defined as orbits of the third kind, following the Chandrasekhar classification of particle orbits in the black hole gravitational field. The existence domain for the third kind orbits is rather spacious, and thus there is place for life inside supermassive black holes in the galactic nuclei. Interiors of the supermassive black holes may be inhabited by civilizations, being invisible from the outside. In principle, one can get information from the interiors of black holes by observing their white hole counterparts.Comment: 11 pages, 5 figures; references adde

    New patient-oriented summary measure of net total gain in certainty for dichotomous diagnostic tests

    Get PDF
    OBJECTIVES: To introduce a new, patient-oriented predictive index as a measure of gain in certainty. STUDY DESIGN: Algebraic equations. RESULTS: A new measure is suggested based on error rates in a patient population. The new Predictive Summary Index (PSI) reflects the true total gain in certainty obtained by performing a diagnostic test based on knowledge of disease prevalence, i.e., the overall additional certainty. We show that the overall gain in certainty can be expressed in the form of the following expression: PSI = PPV+NPV-1. PSI is a more comprehensive measure than the post-test probability or the Youden Index (J). The reciprocal of J is interpreted as the number of persons with a given disease who need to be examined in order to detect correctly one person with the disease. The reciprocal of PSI is suggested as the number of persons who need to be examined in order to correctly predict a diagnosis of the disease. CONCLUSION: PSI provides more information than J and the predictive values, making it more appropriate in a clinical setting

    Skid Characteristics of Pavement Surfaces in Indiana

    Get PDF

    Simulation of Flow of Mixtures Through Anisotropic Porous Media using a Lattice Boltzmann Model

    Full text link
    We propose a description for transient penetration simulations of miscible and immiscible fluid mixtures into anisotropic porous media, using the lattice Boltzmann (LB) method. Our model incorporates hydrodynamic flow, diffusion, surface tension, and the possibility for global and local viscosity variations to consider various types of hardening fluids. The miscible mixture consists of two fluids, one governed by the hydrodynamic equations and one by diffusion equations. We validate our model on standard problems like Poiseuille flow, the collision of a drop with an impermeable, hydrophobic interface and the deformation of the fluid due to surface tension forces. To demonstrate the applicability to complex geometries, we simulate the invasion process of mixtures into wood spruce samples.Comment: Submitted to EPJ
    corecore