148 research outputs found
Multiparty Quantum Secret Sharing Based on Entanglement Swapping
A multiparty quantum secret sharing (QSS) protocol is proposed by using
swapping quantum entanglement of Bell states. The secret messages are imposed
on Bell states by local unitary operations. The secret messages are split into
several parts and each part is distributed to a party so that no action of a
subset of all the parties but their entire cooperation is able to read out the
secret messages. In addition, the dense coding is used in this protocol to
achieve a high efficiency. The security of the present multiparty QSS against
eavesdropping has been analyzed and confirmed even in a noisy quantum channel.Comment: 5 page
Long-range entanglement generation via frequent measurements
A method is introduced whereby two non-interacting quantum subsystems, that
each interact with a third subsystem, are entangled via repeated projective
measurements of the state of the third subsystem. A variety of physical
examples are presented. The method can be used to establish long range
entanglement between distant parties in one parallel measurement step, thus
obviating the need for entanglement swapping.Comment: 7 pages, incl. 2 figures. v2: added a few small clarifications and a
referenc
Quantum secret sharing between multi-party and multi-party without entanglement
We propose a quantum secret sharing protocol between multi-party ( members
in group 1) and multi-party ( members in group 2) using a sequence of single
photons. These single photons are used directly to encode classical information
in a quantum secret sharing process. In this protocol, all members in group 1
directly encode their respective keys on the states of single photons via
unitary operations, then the last one (the member of group 1) sends
of the resulting qubits to each of group 2. Thus the secret message
shared by all members of group 1 is shared by all members of group 2 in such a
way that no subset of each group is efficient to read the secret message, but
the entire set (not only group 1 but also group 2) is. We also show that it is
unconditionally secure. This protocol is feasible with present-day techniques.Comment: 6 pages, no figur
Large scale prop-fan structural design study. Volume 1: Initial concepts
In recent years, considerable attention has been directed toward improving aircraft fuel consumption. Studies have shown that the inherent efficiency advantage that turboprop propulsion systems have demonstrated at lower cruise speeds may now be extended to the higher speeds of today's turbofan and turbojet-powered aircraft. To achieve this goal, new propeller designs will require features such as thin, high speed airfoils and aerodynamic sweep, features currently found only in wing designs for high speed aircraft. This is Volume 1 of a 2 volume study to establish structural concepts for such advanced propeller blades, to define their structural properties, to identify any new design, analysis, or fabrication techniques which were required, and to determine the structural tradeoffs involved with several blade shapes selected primarily on the basis of aero/acoustic design considerations. The feasibility of fabricating and testing dynamically scaled models of these blades for aeroelastic testing was also established. The preliminary design of a blade suitable for flight use in a testbed advanced turboprop was conducted and is described in Volume 2
Decoherence Free Subspace and entanglement by interaction with a common squeezed bath
In this work we find explicitly the decoherence free subspace (DFS) for a two
two-level system in a common squeezed vacuum bath. We also find an orthogonal
basis for the DFS composed of a symmetrical and an antisymmetrical (under
particle permutation) entangled state. For any initial symmetrical state, the
master equation has one stationary state which is the symmetrical entangled
decoherence free state. In this way, one can generate entanglement via common
squeezed bath of the two systems. If the initial state does not have a definite
parity, the stationary state depends strongly on the initial conditions of the
system and it has a statistical mixture of states which belong to the DFS. We
also study the effect of the coupling between the two-level systems on the DFS.Comment: 4 pages, 1 figur
Efficient Multi-Party Quantum Secret Sharing Schemes
In this work, we generalize the quantum secret sharing scheme of Hillary,
Bu\v{z}ek and Berthiaume[Phys. Rev. A59, 1829(1999)] into arbitrary
multi-parties. Explicit expressions for the shared secret bit is given. It is
shown that in the Hillery-Bu\v{z}ek-Berthiaume quantum secret sharing scheme
the secret information is shared in the parity of binary strings formed by the
measured outcomes of the participants. In addition, we have increased the
efficiency of the quantum secret sharing scheme by generalizing two techniques
from quantum key distribution. The favored-measuring-basis Quantum secret
sharing scheme is developed from the Lo-Chau-Ardehali technique[H. K. Lo, H. F.
Chau and M. Ardehali, quant-ph/0011056] where all the participants choose their
measuring-basis asymmetrically, and the measuring-basis-encrypted Quantum
secret sharing scheme is developed from the Hwang-Koh-Han technique [W. Y.
Hwang, I. G. Koh and Y. D. Han, Phys. Lett. A244, 489 (1998)] where all
participants choose their measuring-basis according to a control key. Both
schemes are asymptotically 100% in efficiency, hence nearly all the GHZ-states
in a quantum secret sharing process are used to generate shared secret
information.Comment: 7 page
Eutactic quantum codes
We consider sets of quantum observables corresponding to eutactic stars.
Eutactic stars are systems of vectors which are the lower dimensional
``shadow'' image, the orthogonal view, of higher dimensional orthonormal bases.
Although these vector systems are not comeasurable, they represent redundant
coordinate bases with remarkable properties. One application is quantum secret
sharing.Comment: 6 page
Simple test for quantum channel capacity
Basing on states and channels isomorphism we point out that semidefinite
programming can be used as a quick test for nonzero one-way quantum channel
capacity. This can be achieved by search of symmetric extensions of states
isomorphic to a given quantum channel. With this method we provide examples of
quantum channels that can lead to high entanglement transmission but still have
zero one-way capacity, in particular, regions of symmetric extendibility for
isotropic states in arbitrary dimensions are presented. Further we derive {\it
a new entanglement parameter} based on (normalised) relative entropy distance
to the set of states that have symmetric extensions and show explicitly the
symmetric extension of isotropic states being the nearest to singlets in the
set of symmetrically extendible states. The suitable regularisation of the
parameter provides a new upper bound on one-way distillable entanglement.Comment: 6 pages, no figures, RevTeX4. Signifficantly corrected version. Claim
on continuity of channel capacities removed due to flaw in the corresponding
proof. Changes and corrections performed in the part proposing a new upper
bound on one-way distillable etanglement which happens to be not one-way
entanglement monoton
Multiparticle Quantum Superposition and Stimulated Entanglement by Parity Selective Amplification of Entangled States
A multiparticle quantum superposition state has been generated by a novel
phase-selective parametric amplifier of an entangled two-photon state. This
realization is expected to open a new field of investigations on the
persistence of the validity of the standard quantum theory for systems of
increasing complexity, in a quasi decoherence-free environment. Because of its
nonlocal structure the new system is expected to play a relevant role in the
modern endeavor on quantum information and in the basic physics of
entanglement.Comment: 13 pages and 3 figure
Geometric quantum computation using fictitious spin- 1/2 subspaces of strongly dipolar coupled nuclear spins
Geometric phases have been used in NMR, to implement controlled phase shift
gates for quantum information processing, only in weakly coupled systems in
which the individual spins can be identified as qubits. In this work, we
implement controlled phase shift gates in strongly coupled systems, by using
non-adiabatic geometric phases, obtained by evolving the magnetization of
fictitious spin-1/2 subspaces, over a closed loop on the Bloch sphere. The
dynamical phase accumulated during the evolution of the subspaces, is refocused
by a spin echo pulse sequence and by setting the delay of transition selective
pulses such that the evolution under the homonuclear coupling makes a complete
rotation. A detailed theoretical explanation of non-adiabatic geometric
phases in NMR is given, by using single transition operators. Controlled phase
shift gates, two qubit Deutsch-Jozsa algorithm and parity algorithm in a
qubit-qutrit system have been implemented in various strongly dipolar coupled
systems obtained by orienting the molecules in liquid crystal media.Comment: 37 pages, 17 figure
- …
