3,578 research outputs found
Robust quantum control by shaped pulse
Considering the problem of the control of a two-state quantum system by an
external field, we establish a general and versatile method that allows the
derivation of smooth pulses, suitable for ultrafast applications, that feature
the properties of high-fidelity, robustness, and low area. Such shaped pulses
can be viewed as a single-shot generalization of the composite pulse technique
with a time-dependent phase
Learning policies through argumentation-derived evidence (extended abstract)
(c) IFAAMASPublisher PD
Interface Dipole : Effects on Threshold Voltage and Mobility for both Amorphous and Poly-crystalline Organic Field Effect Transistors
We report a detailed comparison on the role of a self-assembled monolayer
(SAM) of dipolar molecules on the threshold voltage and charge carrier mobility
of organic field-effect transistor (OFET) made of both amorphous and
polycrystalline organic semiconductors. We show that the same relationship
between the threshold voltage and the dipole-induced charges in the SAM holds
when both types of devices are fabricated on strictly identical base
substrates. Charge carrier mobilities, almost constant for amorphous OFET, are
not affected by the dipole in the SAMs, while for polycrystalline OFET
(pentacene) the large variation of charge carrier mobilities is related to
change in the organic film structure (mostly grain size).Comment: Full paper and supporting informatio
Electron transport through rectifying self-assembled monolayer diodes on silicon: Fermi level pinning at the molecule-metal interface
We report the synthesis and characterization of molecular rectifying diodes
on silicon using sequential grafting of self-assembled monolayers of alkyl
chains bearing a pi group at their outer end (Si/sigma-pi/metal junctions). We
investigate the structure-performance relationships of these molecular devices
and we examine to what extent the nature of the pi end-group (change in the
energy position of their molecular orbitals) drives the properties of these
molecular diodes. For all the pi-groups investigated here, we observe
rectification behavior. These results extend our preliminary work using phenyl
and thiophene groups (S. Lenfant et al., Nano Letters 3, 741 (2003)).The
experimental current-voltage curves are analyzed with a simple analytical
model, from which we extract the energy position of the molecular orbital of
the pi-group in resonance with the Fermi energy of the electrodes. We report
the experimental studies of the band lineup in these silicon/alkyl-pi
conjugated molecule/metal junctions. We conclude that Fermi level pinning at
the pi-group/metal interface is mainly responsible for the observed absence of
dependence of the rectification effect on the nature of the pi-groups, even
though they were chosen to have significant variations in their electronic
molecular orbitalsComment: To be published in J. Phys. Chem.
Effect of ready-to-use-therapeutic food supplementation on the nutritional status, mortality and morbidity of children 6 to 60 months in Niger, a cluster randomized trial
Presented at the conference of the American Society of Tropical Medicine and Hygiene 200
Negative Differential Resistance, Memory and Reconfigurable Logic Functions based on Monolayer Devices derived from Gold Nanoparticles Functionalized with Electro-polymerizable Thiophene-EDOT Units
We report on hybrid memristive devices made of a network of gold
nanoparticles (10 nm diameter) functionalized by tailored
3,4(ethylenedioxy)thiophene (TEDOT) molecules, deposited between two planar
electrodes with nanometer and micrometer gaps (100 nm to 10 um apart), and
electropolymerized in situ to form a monolayer film of conjugated polymer with
embedded gold nanoparticles (AuNPs). Electrical properties of these films
exhibit two interesting behaviors: (i) a NDR (negative differential resistance)
behavior with a peak/valley ratio up to 17, and (ii) a memory behavior with an
ON/OFF current ratio of about 1E3 to 1E4. A careful study of the switching
dynamics and programming voltage window is conducted demonstrating a
non-volatile memory. The data retention of the ON and OFF states is stable
(tested up to 24h), well controlled by the voltage and preserved when repeating
the switching cycles (800 in this study). We demonstrate reconfigurable Boolean
functions in multiterminal connected NP molecule devices.Comment: Full manuscript, figures and supporting information, J. Phys. Chem.
C, on line, asap (2017
Large Logarithms in the Beam Normal Spin Asymmetry of Elastic Electron--Proton Scattering
We study a parity-conserving single-spin beam asymmetry of elastic
electron-proton scattering induced by an absorptive part of the two-photon
exchange amplitude. It is demonstrated that excitation of inelastic hadronic
intermediate states by the consecutive exchange of two photons leads to
logarithmic and double-logarithmic enhancement due to contributions of hard
collinear quasi-real photons. The asymmetry at small electron scattering angles
is expressed in terms of the total photoproduction cross section on the proton,
and is predicted to reach the magnitude of 20-30 parts per million. At these
conditions and fixed 4-momentum transfers, the asymmetry is rising
logarithmically with increasing electron beam energy, following the high-energy
diffractive behavior of total photoproduction cross section on the proton.Comment: 10 pages, 6 figures; typos fixed, a reference adde
Horizontal compressive stress regime on the northern Cascadia margin inferred from borehole breakouts
During Integrated Ocean Drilling Program Expedition 311 five boreholes were drilled across the accretionary prism of the northern Cascadia subduction zone. Logging-while-drilling borehole images are utilized to determine breakout orientations to define maximum horizontal compressive stress orientations. Additionally, wireline logging data at two of these sites and from Site 889 of Ocean Drilling Program Leg 146 are used to define breakouts from differences in the aperture of caliper arms. At most sites, the maximum horizontal compressive stress SHmax is margin-normal, consistent with plate convergence. Deviations from this trend reflect local structural perturbations. Our results do not constrain stress magnitudes. If the margin-normal compressional stress is greater than the vertical stress, the margin-normal SHmax direction we observe may reflect current locking of a velocity-weakening shallow megathrust and thus potential for trench-breaching, tsunamigenic rupture in a future megathrust earthquake
- …
