15 research outputs found

    Microfungi in Drinking Water: The Role of the Frog Litoria caerulea

    Get PDF
    Microfungi were recovered from all parts of a municipal water distribution system in sub-tropical Australia even though virtually no colony-forming units were recovered from the treated water as it left the treatment plant. A study was then undertaken to determine the potential sources of the microfungal population in the distribution system. Observation of frogs (Litoria caerulea) using the internal infrastructure of a reservoir as diurnal sleeping places, together with observation of visible microfungal growth on their faecal pellets, led to an investigation of the possible involvement of this animal. Old faecal pellets were collected and sporulating fungal colonies growing on their surfaces were identified. Fresh faecal pellets were collected and analysed for microfungal content, and skin swabs were analysed for yeasts. It was found that the faeces and skin of L. caerulea carried large numbers of yeasts as well as spores of various filamentous fungal genera. While there are many possible sources of microfungal contamination of municipal drinking water supplies, this study has revealed that the Australian green tree frog L. caerulea is one of the important sources of filamentous microfungi and yeasts in water storage reservoirs in sub-tropical Australia where the animal is endemic

    Collection of Epithelial Cells from Rodent Mammary Gland Via Laser Capture Microdissection Yielding High-Quality RNA Suitable for Microarray Analysis

    Get PDF
    Laser capture microdissection (LCM) enables collection of cell populations highly enriched for specific cell types that have the potential of yielding critical information about physiological and pathophysiological processes. One use of cells collected by LCM is for gene expression profiling. Samples intended for transcript analyses should be of the highest quality possible. RNA degradation is an ever-present concern in molecular biological assays, and LCM is no exception. This paper identifies issues related to preparation, collection, and processing in a lipid-rich tissue, rodent mammary gland, in which the epithelial to stromal cell ratio is low and the stromal component is primarily adipocytes, a situation that presents numerous technical challenges for high-quality RNA isolation. Our goal was to improve the procedure so that a greater probe set present call rate would be obtained when isolated RNA was evaluated using Affymetrix microarrays. The results showed that the quality of RNA isolated from epithelial cells of both mammary gland and mammary adenocarcinomas was high with a probe set present call rate of 65% and a high signal-to-noise ratio
    corecore