1,499 research outputs found
Penetration and cratering experiments of graphite by 0.5-mm diameter steel spheres at various impact velocities
Cratering experiments have been conducted with 0.5-mm diameter AISI 52100 steel spherical projectiles and 30-mm diameter, 15-mm long graphite targets. The latter were made of a commercial grade of polycrystalline and porous graphite named EDM3 whose behavior is known as macroscopically isotropic. A two-stage light-gas gun launched the steel projectiles at velocities between 1.1 and 4.5 km s 1. In most cases, post-mortem tomographies revealed that the projectile was trapped, fragmented or not, inside the target. It showed that the apparent crater size and depth increase with the impact velocity. This is also the case of the crater volume which appears to follow a power law significantly different from those constructed in previous works for similar impact conditions and materials. Meanwhile, the projectile depth of penetration starts to decrease at velocities beyond 2.2 km s 1. This is firstly because of its plastic deformation and then, beyond 3.2 km s 1, because of its fragmentation. In addition to these three regimes of penetration behavior already described by a few authors, we suggest a fourth regime in which the projectile melting plays a significant role at velocities above 4.1 km s 1. A discussion of these four regimes is provided and indicates that each phenomenon may account for the local evolution of the depth of penetration
Resonant excitonic emission of a single quantum dot in the Rabi regime
We report on coherent resonant emission of the fundamental exciton state in a
single semiconductor GaAs quantum dot. Resonant regime with picoseconde laser
excitation is realized by embedding the quantum dots in a waveguiding
structure. As the pulse intensity is increased, Rabi oscillation is observed up
to three periods. The Rabi regime is achieved owing to an enhanced light-matter
coupling in the waveguide. This is due to a \emph{slow light effect}
(), occuring when an intense resonant pulse propagates in a
medium. The resonant control of the quantum dot fundamental transition opens
new possibilities in quantum state manipulation and quantum optics experiments
in condensed matter physics.Comment: Submitted to Phys. Rev. Let
Shocks in dense clouds. IV. Effects of grain-grain processing on molecular line emission
Grain-grain processing has been shown to be an indispensable ingredient of
shock modelling in high density environments. For densities higher than
\sim10^5 cm-3, shattering becomes a self-enhanced process that imposes severe
chemical and dynamical consequences on the shock characteristics. Shattering is
accompanied by the vaporization of grains, which can directly release SiO to
the gas phase. Given that SiO rotational line radiation is used as a major
tracer of shocks in dense clouds, it is crucial to understand the influence of
vaporization on SiO line emission. We have developed a recipe for implementing
the effects of shattering and vaporization into a 2-fluid shock model,
resulting in a reduction of computation time by a factor \sim100 compared to a
multi-fluid modelling approach. This implementation was combined with an
LVG-based modelling of molecular line radiation transport. Using this model we
calculated grids of shock models to explore the consequences of different
dust-processing scenarios. Grain-grain processing is shown to have a strong
influence on C-type shocks for a broad range of magnetic fields: they become
hotter and thinner. The reduction in column density of shocked gas lowers the
intensity of molecular lines, at the same time as higher peak temperatures
increase the intensity of highly excited transitions compared to shocks without
grain-grain processing. For OH the net effect is an increase in line
intensities, while for CO and H2O it is the contrary. The intensity of H2
emission is decreased in low transitions and increased for highly excited
lines. For all molecules, the highly excited lines become sensitive to the
value of the magnetic field. Although vaporization increases the intensity of
SiO rotational lines, this effect is weakened by the reduced shock width. The
release of SiO early in the hot shock changes the excitation characteristics of
SiO radiation.Comment: Published in Astronomy and Astrophysics (2013). 26 pages, 16 figures,
14 table
Polarization measurements analysis II. Best estimators of polarization fraction and angle
With the forthcoming release of high precision polarization measurements,
such as from the Planck satellite, it becomes critical to evaluate the
performance of estimators for the polarization fraction and angle. These two
physical quantities suffer from a well-known bias in the presence of
measurement noise, as has been described in part I of this series. In this
paper, part II of the series, we explore the extent to which various estimators
may correct the bias. Traditional frequentist estimators of the polarization
fraction are compared with two recent estimators: one inspired by a Bayesian
analysis and a second following an asymptotic method. We investigate the
sensitivity of these estimators to the asymmetry of the covariance matrix which
may vary over large datasets. We present for the first time a comparison among
polarization angle estimators, and evaluate the statistical bias on the angle
that appears when the covariance matrix exhibits effective ellipticity. We also
address the question of the accuracy of the polarization fraction and angle
uncertainty estimators. The methods linked to the credible intervals and to the
variance estimates are tested against the robust confidence interval method.
From this pool of estimators, we build recipes adapted to different use-cases:
build a mask, compute large maps, and deal with low S/N data. More generally,
we show that the traditional estimators suffer from discontinuous distributions
at low S/N, while the asymptotic and Bayesian methods do not. Attention is
given to the shape of the output distribution of the estimators, and is
compared with a Gaussian. In this regard, the new asymptotic method presents
the best performance, while the Bayesian output distribution is shown to be
strongly asymmetric with a sharp cut at low S/N.Finally, we present an
optimization of the estimator derived from the Bayesian analysis using adapted
priors
Engineering the spatial confinement of exciton-polaritons in semiconductors
We demonstrate the spatial confinement of electronic excitations in a solid
state system, within novel artificial structures that can be designed having
arbitrary dimensionality and shape. The excitations under study are
exciton-polaritons in a planar semiconductor microcavity. They are confined
within a micron-sized region through lateral trapping of their photon
component. Striking signatures of confined states of lower and upper polaritons
are found in angle-resolved light emission spectra, where a discrete energy
spectrum and broad angular patterns are present. A theoretical model supports
unambiguously our observations
Local disorder and optical properties in V-shaped quantum wires : towards one-dimensional exciton systems
The exciton localization is studied in GaAs/GaAlAs V-shaped quantum wires
(QWRs) by high spatial resolution spectroscopy. Scanning optical imaging of
different generations of samples shows that the localization length has been
enhanced as the growth techniques were improved. In the best samples, excitons
are delocalized in islands of length of the order of 1 micron, and form a
continuum of 1D states in each of them, as evidenced by the sqrt(T) dependence
of the radiative lifetime. On the opposite, in the previous generation of QWRs,
the localization length is typically 50 nm and the QWR behaves as a collection
of quantum boxes. These localization properties are compared to structural
properties and related to the progresses of the growth techniques. The presence
of residual disorder is evidenced in the best samples and explained by the
separation of electrons and holes due to the large in-built piezo-electric
field present in the structure.Comment: 8 figure
LO-phonon assisted polariton lasing in a ZnO based microcavity
Polariton relaxation mechanisms are analysed experimentally and theoretically
in a ZnO-based polariton laser. A minimum lasing threshold is obtained when the
energy difference between the exciton reservoir and the bottom of the lower
polariton branch is resonant with the LO phonon energy. Tuning off this
resonance increases the threshold, and exciton-exciton scattering processes
become involved in the polariton relaxation. These observations are
qualitatively reproduced by simulations based on the numerical solution of the
semi-classical Boltzmann equations
Optimization of cw sodium laser guide star efficiency
Context: Sodium laser guide stars (LGS) are about to enter a new range of
laser powers. Previous theoretical and numerical methods are inadequate for
accurate computations of the return flux and hence for the design of the
next-generation LGS systems.
Aims: We numerically optimize the cw (continuous wave) laser format, in
particular the light polarization and spectrum.
Methods: Using Bloch equations, we simulate the mesospheric sodium atoms,
including Doppler broadening, saturation, collisional relaxation, Larmor
precession, and recoil, taking into account all 24 sodium hyperfine states and
on the order of 100 velocity groups.
Results: LGS return flux is limited by "three evils": Larmor precession due
to the geomagnetic field, atomic recoil due to radiation pressure, and
transition saturation. We study their impacts and show that the return flux can
be boosted by repumping (simultaneous excitation of the sodium D2a and D2b
lines with 10-20% of the laser power in the latter).
Conclusions: We strongly recommend the use of circularly polarized lasers and
repumping. As a rule of thumb, the bandwidth of laser radiation in MHz (at each
line) should approximately equal the launched laser power in Watts divided by
six, assuming a diffraction-limited spot size.Comment: 15 pages, 12 figures, to be published in Astronomy & Astrophysics,
AA/2009/1310
Nouvelles stratégies de radionanomédecines pour le ciblage des cellules initiatrices de cancer dans le glioblastome
Hadronic production and the Gottfried Sum Rule
The difference in production rate between and at hadron colliders
is very sensitive to the the difference between up- and down-quark
distributions in the proton. This sensitivity allows for a variety of useful
measurements. We consider the difference in the sea
distributions and the difference in the
polarized parton distribution functions. In both cases we construct an
asymmetry to reduce systematic uncertainties. Although we discuss measurements
at the Tevatron and future hadron colliders, we find that the Brookhaven
Relativistic Heavy Ion Collider (RHIC) is the most appropriate hadron collider
for these measurements.Comment: 19 pages (20 figures available from the authors), MAD/PH/74
- …
