435 research outputs found

    Game design in an Internet of Things

    Get PDF
    Whilst no consensus yet exists on how the Internet of Things will be realised, a global infrastructure of networked physical objects that are readable, recognizable, locatable, addressable and controllable is undoubtedly a compelling vision. Although many implementations of the Internet of Things have presented these objects in a largely ambient sensing role, or providing some form of remote access/control, in this paper we consider the emerging convergence between games and the Internet of Things. This can be seen in a growing number of games that use objects as physical game pieces to enhance the players’ interaction with virtual games. These hybrid physical/digital objects present game designers with number of interesting challenges as they i) blur the boundaries between toys and games; ii) provide opportunities for freeform physical play outside the virtual game; and iii) create new requirements for interaction design, in that they utilise design techniques from both product design and computer interface design. Whilst in the past the manufacturing costs of such game objects would preclude their use within games from small independent games developers, the advent of low cost 3D printing and open software and hardware platforms, which are the enablers of the Internet of Things, means this is no longer the case. However, in order to maximise this opportunity game designers will need to develop new approaches to the design of their games and in this paper we highlight the design sensibilities required if they are to combine the digital and physical affordances within the design of such objects to produce good player experiences

    Computational and Mathematical Modelling of the EGF Receptor System

    Get PDF
    This chapter gives an overview of computational and mathematical modelling of the EGF receptor system. It begins with a survey of motivations for producing such models, then describes the main approaches that are taken to carrying out such modelling, viz. differential equations and individual-based modelling. Finally, a number of projects that applying modelling and simulation techniques to various aspects of the EGF receptor system are described

    Cytokines and Inflammatory Mediators [30-39]: 30. The LPS Stimulated Production of Interleukin-10 is not Associated with -819C/T and -592C/A Promoter Polymorphisms in Healthy Indian Subjects

    Get PDF
    Background: Interleukin-10 is a pivotal immunoregulatory cytokine with pleiotropic effects on the immune system. IL-10 promoter polymorphisms have been associated with disease susceptibility and the ability to secrete IL-10 in vitro. We suspected that the association of the widely studied -819C/T and -592C/A polymorphisms with the IL-10 production might vary between ethnic groups. Therefore, we examined the association of -819 C/T and -592 C/A promoter polymorphisms with in vitro LPS stimulated secretion of IL-10 in normal healthy Indian volunteers. Methods: Peripheral blood was collected from 103 healthy volunteers and diluted whole blood cultures were set up with 100 ng/ml of LPS as stimulant: supernatant was collected at 24 h and IL-10 levels were assayed by ELISA. Genotyping was done for -819C/T polymorphism in 101 individuals and -592C/A polymorphism in 68 individuals by polymerase chain reaction followed by RFLP. The differences in IL-10 production between the genotypes were analysed by ANOVA. Results: There were 30, 47 and 24 individuals with the CC, CT and TT genotypes with a minor allele (T) frequency of 47% for the -819C/T polymorphism. The CC and TT genotypes at position -819 were strongly associated with CC and AA genotypes at -592 position suggestive of strong linkage disequilibrium. There was no association between the -819 genotype and the in vitro LPS stimulated IL-10 levels. Conclusions: The -819C/T and the -592 C/A polymorphisms of the IL-10 promoter region are not significantly associated with LPS stimulated IL-10 production healthy Indian subjects. Disclosure statement: All authors have declared no conflicts of interes

    Future therapeutic targets in rheumatoid arthritis?

    Get PDF
    Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by persistent joint inflammation. Without adequate treatment, patients with RA will develop joint deformity and progressive functional impairment. With the implementation of treat-to-target strategies and availability of biologic therapies, the outcomes for patients with RA have significantly improved. However, the unmet need in the treatment of RA remains high as some patients do not respond sufficiently to the currently available agents, remission is not always achieved and refractory disease is not uncommon. With better understanding of the pathophysiology of RA, new therapeutic approaches are emerging. Apart from more selective Janus kinase inhibition, there is a great interest in the granulocyte macrophage-colony stimulating factor pathway, Bruton's tyrosine kinase pathway, phosphoinositide-3-kinase pathway, neural stimulation and dendritic cell-based therapeutics. In this review, we will discuss the therapeutic potential of these novel approaches

    Acquired resistance to oxaliplatin is not directly associated with increased resistance to DNA damage in SK-N-ASrOXALI4000, a newly established oxaliplatin-resistant sub-line of the neuroblastoma cell line SK-N-AS

    Get PDF
    The formation of acquired drug resistance is a major reason for the failure of anti-cancer therapies after initial response. Here, we introduce a novel model of acquired oxaliplatin resistance, a sub-line of the non-MYCN-amplified neuroblastoma cell line SK-N-AS that was adapted to growth in the presence of 4000 ng/mL oxaliplatin (SK-N-ASrOXALI4000). SK-N-ASrOXALI4000 cells displayed enhanced chromosomal aberrations compared to SK-N-AS, as indicated by 24-chromosome fluorescence in situ hybridisation. Moreover, SK-N-ASrOXALI4000 cells were resistant not only to oxaliplatin but also to the two other commonly used anti-cancer platinum agents cisplatin and carboplatin. SK-N-ASrOXALI4000 cells exhibited a stable resistance phenotype that was not affected by culturing the cells for 10 weeks in the absence of oxaliplatin. Interestingly, SK-N-ASrOXALI4000 cells showed no cross resistance to gemcitabine and increased sensitivity to doxorubicin and UVC radiation, alternative treatments that like platinum drugs target DNA integrity. Notably, UVC-induced DNA damage is thought to be predominantly repaired by nucleotide excision repair and nucleotide excision repair has been described as the main oxaliplatin-induced DNA damage repair system. SK-N-ASrOXALI4000 cells were also more sensitive to lysis by influenza A virus, a candidate for oncolytic therapy, than SK-N-AS cells. In conclusion, we introduce a novel oxaliplatin resistance model. The oxaliplatin resistance mechanisms in SK-N-ASrOXALI4000 cells appear to be complex and not to directly depend on enhanced DNA repair capacity. Models of oxaliplatin resistance are of particular relevance since research on platinum drugs has so far predominantly focused on cisplatin and carboplatin

    Processing changes when listening to foreign-accented speech

    Get PDF
    This study investigates the mechanisms responsible for fast changes in processing foreign-accented speech. Event Related brain Potentials (ERPs) were obtained while native speakers of Spanish listened to native and foreign-accented speakers of Spanish. We observed a less positive P200 component for foreign-accented speech relative to native speech comprehension. This suggests that the extraction of spectral information and other important acoustic features was hampered during foreign-accented speech comprehension. However, the amplitude of the N400 component for foreign-accented speech comprehension decreased across the experiment, suggesting the use of a higher level, lexical mechanism. Furthermore, during native speech comprehension, semantic violations in the critical words elicited an N400 effect followed by a late positivity. During foreign-accented speech comprehension, semantic violations only elicited an N400 effect. Overall, our results suggest that, despite a lack of improvement in phonetic discrimination, native listeners experience changes at lexical-semantic levels of processing after brief exposure to foreign-accented speech. Moreover, these results suggest that lexical access, semantic integration and linguistic re-analysis processes are permeable to external factors, such as the accent of the speaker

    Evaluation of epidermal growth factor receptors in bladder tumours.

    Get PDF
    Epidermal growth factor (EGF) receptor expression in 31 primary human bladder tumours was quantitated using both structural and functional assays and the EGF receptor gene in the same tumours was analyzed by Southern blot analysis. Immunocytochemical studies using the EGFR1 monoclonal antibody (Mab) showed a significant correlation between EGF receptor levels and the stage and grade of the tumours. Autophosphorylation assays employed to evaluate the receptor's tyrosine kinase activity gave results which in general were consistent with the immunocytochemical data. Using internally controlled immunocytochemical studies with two Mabs and Southern blot analysis of DNA isolated from the tumours, no evidence was obtained for the production of truncated receptors similar to those encoded by the v-erb-B oncogene. Gene amplification was not found in any of the superficial tumours, but one invasive tumour with high EGF receptor expression had an 8-10 fold amplification of the EGF receptor gene. The EGF receptor isolated from this tumour showed a normal pattern of tyrosine phosphorylation at all three major autophosphorylation sites. Our detailed study is consistent with the correlation previously found between EGF receptor expression and stage and grade of bladder tumours, and suggests that at this level of analysis EGF receptors in bladder tumours are not abnormal in structure or size, autophosphorylation activity, or gene structure
    corecore