336 research outputs found
On Semiclassical Limits of String States
We explore the relation between classical and quantum states in both open and
closed (super)strings discussing the relevance of coherent states as a
semiclassical approximation. For the closed string sector a gauge-fixing of the
residual world-sheet rigid translation symmetry of the light-cone gauge is
needed for the construction to be possible. The circular target-space loop
example is worked out explicitly.Comment: 12 page
The dusty SF history of high-z galaxies, modelling tools and future prospects
We summarize recent advances in the determination of the cosmic history of star formation and other properties of high-z galaxies, and the relevance of this information in our understanding of the formation of structures. We emphasize the importance of dust reprocessing in the high--z universe, as demonstrated in particular by IR and sub-mm data. This demand a panchromatic approach to observations and suitable modelling tools. We spend also some words on expectations from future instruments
Quantum dynamics and thermalization for out-of-equilibrium phi^4-theory
The quantum time evolution of \phi^4-field theory for a spatially homogeneous
system in 2+1 space-time dimensions is investigated numerically for
out-of-equilibrium initial conditions on the basis of the Kadanoff-Baym
equations including the tadpole and sunset self-energies. Whereas the tadpole
self-energy yields a dynamical mass, the sunset self-energy is responsible for
dissipation and an equilibration of the system. In particular we address the
dynamics of the spectral (`off-shell') distributions of the excited quantum
modes and the different phases in the approach to equilibrium described by
Kubo-Martin-Schwinger relations for thermal equilibrium states. The
investigation explicitly demonstrates that the only translation invariant
solutions representing the stationary fixed points of the coupled equation of
motions are those of full thermal equilibrium. They agree with those extracted
from the time integration of the Kadanoff-Baym equations in the long time
limit. Furthermore, a detailed comparison of the full quantum dynamics to more
approximate and simple schemes like that of a standard kinetic (on-shell)
Boltzmann equation is performed. Our analysis shows that the consistent
inclusion of the dynamical spectral function has a significant impact on
relaxation phenomena. The different time scales, that are involved in the
dynamical quantum evolution towards a complete thermalized state, are discussed
in detail. We find that far off-shell 1 3 processes are responsible for
chemical equilibration, which is missed in the Boltzmann limit. Finally, we
address briefly the case of (bare) massless fields. For sufficiently large
couplings we observe the onset of Bose condensation, where our scheme
within symmetric \phi^4-theory breaks down.Comment: 77 pages, 26 figure
Biodiversity into your hands - A call for a virtual global natural history 'metacollection'
10.1186/1742-9994-10-55Frontiers in Zoology101
Strategies for parallel and numerical scalability of CFD codes
In this article we discuss a strategy for speeding up the solution of the Navier—Stokes equations on highly complex solution domains such as complete aircraft, spacecraft, or turbomachinery equipment. We have used a finite-volume code for the (non-turbulent) Navier—Stokes equations as a testbed for implementation of linked numerical and parallel processing techniques. Speedup is achieved by the Tangled Web of advanced grid topology generation, adaptive coupling, and sophisticated parallel computing techniques.
An optimized grid topology is used to generate an optimized grid: on the block level such a grid is unstructured whereas within a block a structured mesh is constructed, thus retaining the geometrical flexibility of the finite element method while maintaining the numerical efficiency of the finite difference technique. To achieve a steady state solution, we use grid-sequencing: proceeding from coarse to finer grids, where the scheme is explicit in time. Adaptive coupling is derived from the observation that numerical schemes have differing efficiency during the solution process. Coupling strength between grid points is increased by using an implicit scheme at the sub-block level, then at the block level, ultimately fully implicit across the whole computational domain. Other techniques include switching numerical schemes and the physics model during the solution, and dynamic deactivation of blocks. Because the computational work per block is very variable with adaptive coupling, especially for very complex flows, we have implemented parallel dynamic load-balancing to dynamically transfer blocks between processors. Several 2D and 3D examples illustrate the functioning of the Tangled Web approach on different parallel architectures
Ultrafast optically induced spin transfer in ferromagnetic alloys
The vision of using light to manipulate electronic and spin excitations in materials on their fundamental time and length scales requires new approaches in experiment and theory to observe and understand these excitations. The ultimate speed limit for all-optical manipulation requires control schemes for which the electronic or magnetic subsystems of the materials are coherently manipulated on the time scale of the laser excitation pulse. In our work, we provide experimental evidence of such a direct, ultrafast, and coherent spin transfer between two magnetic subsystems of an alloy of Fe and Ni. Our experimental findings are fully supported by time-dependent density functional theory simulations and, hence, suggest the possibility of coherently controlling spin dynamics on subfemtosecond time scales, i.e., the birth of the research area of attomagnetism
Efficacy of hypnosis/guided imagery in fibromyalgia syndrome - a systematic review and meta-analysis of controlled trials
Severe high-molecular-weight kininogen deficiency: clinical characteristics, deficiency–causing KNG1 variants, and estimated prevalence
Background: Severe high-molecular-weight kininogen (HK) deficiency is a poorly studied autosomal recessive contact system defect caused by pathogenic, biallelic KNG1 variants.
Aim: We performed the first comprehensive analysis of diagnostic, clinical, genetic, and epidemiological aspects of HK deficiency.
Methods: We collected clinical information and blood samples from a newly detected HK-deficient individual and from published cases identified by a systematic literature review. Activity and antigen levels of coagulation factors were determined. Genetic analyses of KNG1 and KLKB1 were performed by Sanger sequencing. The frequency of HK deficiency was estimated considering truncating KNG1 variants from GnomAD.
Results: We identified 48 cases of severe HK deficiency (41 families), of these 47 have been previously published (n = 19 from gray literature). We genotyped 3 cases and critically appraised 10 studies with genetic data. Ten HK deficiency-causing variants (one new) were identified. All of them were truncating mutations, whereas the only known HK amino acid substitution with a relevant phenotype instead causes hereditary angioedema. Conservative estimates suggest an overall prevalence of severe HK deficiency of approximately one case per 8 million population, slightly higher in Africans. Individuals with HK deficiency appeared asymptomatic and had decreased levels of prekallikrein and factor XI, which could lead to misdiagnosis.
Conclusion: HK deficiency is a rare condition with only few known pathogenic variants. It has an apparently good prognosis but is prone to misdiagnosis. Our understanding of its clinical implications is still limited, and an international prekallikrein and HK deficiency registry is being established to fill this knowledge gap.
Keywords: blood coagulation disorders; diagnosis; epidemiology; high-molecular-weight; kallikrein-kinin system; kininogen; partial thromboplastin tim
Ultrafast optically induced spin transfer in ferromagnetic alloys
The vision of using light to manipulate electronic and spin excitations in materials on their fundamental time and length scales requires new approaches in experiment and theory to observe and understand these excitations. The ultimate speed limit for all-optical manipulation requires control schemes for which the electronic or magnetic subsystems of the materials are coherently manipulated on the time scale of the laser excitation pulse. In our work, we provide experimental evidence of such a direct, ultrafast, and coherent spin transfer between two magnetic subsystems of an alloy of Fe and Ni. Our experimental findings are fully supported by time-dependent density functional theory simulations and, hence, suggest the possibility of coherently controlling spin dynamics on subfemtosecond time scales, i.e., the birth of the research area of attomagnetism
- …
