7,157 research outputs found
Monte Carlo simulations of the screening potential of the Yukawa one-component plasma
A Monte Carlo scheme to sample the screening potential H(r) of Yukawa plasmas
notably at short distances is presented. This scheme is based on an importance
sampling technique. Comparisons with former results for the Coulombic
one-component plasma are given. Our Monte Carlo simulations yield an accurate
estimate of H(r) as well for short range and long range interparticle
distances.Comment: to be published in Journal of Physics A: Mathematical and Genera
An accurate equation of state for the one component plasma in the low coupling regime
An accurate equation of state of the one component plasma is obtained in the
low coupling regime . The accuracy results from a smooth
combination of the well-known hypernetted chain integral equation, Monte Carlo
simulations and asymptotic analytical expressions of the excess internal energy
. In particular, special attention has been brought to describe and take
advantage of finite size effects on Monte Carlo results to get the
thermodynamic limit of . This combined approach reproduces very accurately
the different plasma correlation regimes encountered in this range of values of
. This paper extends to low 's an earlier Monte Carlo
simulation study devoted to strongly coupled systems for ({J.-M. Caillol}, {J. Chem. Phys.} \textbf{111}, 6538 (1999)). Analytical
fits of in the range are provided with a
precision that we claim to be not smaller than . HNC equation and
exact asymptotic expressions are shown to give reliable results for
only in narrow intervals, i.e. and respectively
Low-Field Phase Diagram of Layered Superconductors: The Role of Electromagnetic Coupling
We determine the position and shape of the melting line in a layered
superconductor taking the electromagnetic coupling between layers into account.
In the limit of vanishing Josephson coupling we obtain a new generic reentrant
low-field melting line. Finite Josephson coupling pushes the melting line to
higher temperatures and fields and a new line shape is found. We construct the low-field phase diagram including
melting and decoupling lines and discuss various experiments in the light of
our new results.Comment: 12 pages, 1 figure attached as compressed and uuencoded postscrip
Scalar Casimir Effect on a D-dimensional Einstein Static Universe
We compute the renormalised energy momentum tensor of a free scalar field
coupled to gravity on an (n+1)-dimensional Einstein Static Universe (ESU),
RxS^n, with arbitrary low energy effective operators (up to mass dimension
n+1). A generic class of regulators is used, together with the Abel-Plana
formula, leading to a manifestly regulator independent result. The general
structure of the divergences is analysed to show that all the gravitational
couplings (not just the cosmological constant) are renormalised for an
arbitrary regulator. Various commonly used methods (damping function,
point-splitting, momentum cut-off and zeta function) are shown to, effectively,
belong to the given class. The final results depend strongly on the parity of
n. A detailed analytical and numerical analysis is performed for the behaviours
of the renormalised energy density and a quantity `sigma' which determines if
the strong energy condition holds for the `quantum fluid'. We briefly discuss
the quantum fluid back-reaction problem, via the higher dimensional Friedmann
and Raychaudhuri equations, observe that equilibrium radii exist and unveil the
possibility of a `Casimir stabilisation of Einstein Static Universes'.Comment: 37 pages, 15 figures, v2: minor changes in sections 1, 2.5, 3 and 4;
version published in CQ
The density functional theory of classical fluids revisited
We reconsider the density functional theory of nonuniform classical fluids
from the point of view of convex analysis. From the observation that the
logarithm of the grand-partition function is a convex
functional of the external potential it is shown that the Kohn-Sham free
energy is a convex functional of the density . and constitute a pair of Legendre transforms and each
of these functionals can therefore be obtained as the solution of a variational
principle. The convexity ensures the unicity of the solution in both cases. The
variational principle which gives as the maximum of a
functional of is precisely that considered in the density functional
theory while the dual principle, which gives as the maximum of
a functional of seems to be a new result.Comment: 10 page
Vortices in a Thin Film Superconductor with a Spherical Geometry
We report results from Monte Carlo simulations of a thin film superconductor
in a spherical geometry within the lowest Landau level approximation. We
observe the absence of a phase transition to a low temperature vortex solid
phase with these boundary conditions; the system remains in the vortex liquid
phase for all accessible temperatures. The correlation lengths are measured for
phase coherence and density modulation. Both lengths display identical
temperature dependences, with an asymptotic scaling form consistent with a
continuous zero temperature transition. This contrasts with the first order
freezing transition which is seen in the alternative quasi-periodic boundary
conditions. The high temperature perturbation theory and the ground states of
the spherical system suggest that the thermodynamic limit of the spherical
geometry is the same as that on the flat plane. We discuss the advantages and
drawbacks of simulations with different geometries, and compare with current
experimental conclusions. The effect of having a large scale inhomogeneity in
the applied field is also considered.Comment: This replacment contains substantial revisions: the new article is
twice as long with new and different results on the thermodynamic limit on
the sphere plus a full discussion on the alternative boundary conditions used
in simulations in the LLL approximation. 19 pages, 12 encapsulated PostScript
figures, 1 JPEG figure, uses RevTeX (with epsf
Absence of a Finite-Temperature Melting Transition in the Classical Two-Dimensional One-Component Plasma
Vortices in thin-film superconductors are often modelled as a system of
particles interacting via a repulsive logarithmic potential. Arguments are
presented to show that the hypothetical (Abrikosov) crystalline state for such
particles is unstable at any finite temperature against proliferation of
screened disclinations. The correlation length of crystalline order is
predicted to grow as as the temperature is reduced to zero, in
excellent agreement with our simulations of this two-dimensional system.Comment: 3 figure
Evaporation of the pancake-vortex lattice in weakly-coupled layered superconductors
We calculate the melting line of the pancake-vortex system in a layered
superconductor, interpolating between two-dimensional (2D) melting at high
fields and the zero-field limit of single-stack evaporation. Long-range
interactions between pancake vortices in different layers permit a mean-field
approach, the ``substrate model'', where each 2D crystal fluctuates in a
substrate potential due to the vortices in other layers. We find the thermal
stability limit of the 3D solid, and compare the free energy to a 2D liquid to
determine the first-order melting transition and its jump in entropy.Comment: 4 pages, RevTeX, two postscript figures incorporated using eps
Vortices and 2D bosons: A Path-Integral Monte Carlo Study
The vortex system in a high-T_c superconductor has been studied numerically
using the mapping to 2D bosons and the path-integral Monte Carlo method. We
find a single first-order transition from an Abrikosov lattice to an entangled
vortex liquid. The transition is characterized by an entropy jump dS = 0.4 k_B
per vortex and layer (parameters for YBCO) and a Lindemann number c_L = 0.25.
The increase in density at melting is given by d\rho = 6.0*10^{-4} /
\lambda(T)^2. The vortex liquid corresponds to a bosonic superfluid, with
\rho_s = \rho even in the limit \lambda -> \infty.Comment: 9 pages, RevTeX, 4 PostScript figures. The entropy jump at the
transition has been recomputed and is now in agreement with experiments on
YBCO. Some minor modifications were made in the tex
Correlations in two-component log-gas systems
A systematic study of the properties of particle and charge correlation
functions in the two-dimensional Coulomb gas confined to a one-dimensional
domain is undertaken. Two versions of this system are considered: one in which
the positive and negative charges are constrained to alternate in sign along
the line, and the other where there is no charge ordering constraint. Both
systems undergo a zero-density Kosterlitz-Thouless type transition as the
dimensionless coupling is varied through . In
the charge ordered system we use a perturbation technique to establish an
decay of the two-body correlations in the high temperature limit.
For , the low-fugacity expansion of the asymptotic
charge-charge correlation can be resummed to all orders in the fugacity. The
resummation leads to the Kosterlitz renormalization equations.Comment: 39 pages, 5 figures not included, Latex, to appear J. Stat. Phys.
Shortened version of abstract belo
- …
