14,140 research outputs found
A noise study of the A-6 airplane and techniques for reducing its aural detection distance
A study was undertaken to determine the noise reduction potential of the A-6 airplane in order to reduce its aural detection distance. Static and flyby noise measurements were taken to document the basic airplane signature. The low-frequency noise which is generally most critical for aural detection was found to be broad-band in nature from this airplane, and its source is the turbojet engine exhaust. High-frequency compressor noise, which is characteristic of turbojet powerplants, and which is prominent at close range for this airplane, has no measurable effect on aural detection distance. The use of fluted-engine exhaust nozzles to change the far-field noise spectra is suggested as a possible means for reducing the aural detection distances. Detection distances associated with eight-lobe and four-lobe nozzles are estimated for a 1,000-foot altitude and grassy terrain to decrease from 4 miles to about 3 miles, and from 3 miles to about 2 miles for a 300-foot altitude and grassy terrain
Noise reduction studies for the U-10 airplane
A study was undertaken by the NASA Langley Research Center to determine the noise reduction potential of the U-10 airplane in order to reduce its aural detection distance. Static and flyover noise measurements were made to document the basic airplane noise signature. Two modifications to the airplane configuration are suggested as having the best potential for substantially reducing aural detection distance with small penalty to airplane performance or stability and control. These modifications include changing the present 3-blade propeller to a 5-blade propeller, changing the propeller diameter, and changing the propeller gear ratio, along with the use of an engine exhaust muffler. The aural detection distance corresponding to normal cruising flight at an altitude of 1,000 ft over grassy terrain is reduced from 28,000 ft (5.3 miles) to about 50 percent of that value for modification 1, and to about 25 percent for modification 2. For the aircraft operating at an altitude of 300 ft, the analysis indicates that relatively straightforward modifications could reduce the aural detection distance to approximately 0.9 mile. Operation of the aircraft at greatly reduced engine speed (1650 rpm) with a 1.3-cu-ft muffler provides aural detection distances slightly lower than modification 1
Modeling Long- and Short-Term Temporal Patterns with Deep Neural Networks
Multivariate time series forecasting is an important machine learning problem
across many domains, including predictions of solar plant energy output,
electricity consumption, and traffic jam situation. Temporal data arise in
these real-world applications often involves a mixture of long-term and
short-term patterns, for which traditional approaches such as Autoregressive
models and Gaussian Process may fail. In this paper, we proposed a novel deep
learning framework, namely Long- and Short-term Time-series network (LSTNet),
to address this open challenge. LSTNet uses the Convolution Neural Network
(CNN) and the Recurrent Neural Network (RNN) to extract short-term local
dependency patterns among variables and to discover long-term patterns for time
series trends. Furthermore, we leverage traditional autoregressive model to
tackle the scale insensitive problem of the neural network model. In our
evaluation on real-world data with complex mixtures of repetitive patterns,
LSTNet achieved significant performance improvements over that of several
state-of-the-art baseline methods. All the data and experiment codes are
available online.Comment: Accepted by SIGIR 201
Migration of germline progenitor cells is directed by sphingosine-1-phosphate signalling in a basal chordate.
The colonial ascidian Botryllus schlosseri continuously regenerates entire bodies in an asexual budding process. The germ line of the newly developing bodies is derived from migrating germ cell precursors, but the signals governing this homing process are unknown. Here we show that germ cell precursors can be prospectively isolated based on expression of aldehyde dehydrogenase and integrin alpha-6, and that these cells express germ cell markers such as vasa, pumilio and piwi, as well as sphingosine-1-phosphate receptor. In vitro, sphingosine-1-phosphate (S1P) stimulates migration of germ cells, which depends on integrin alpha-6 activity. In vivo, S1P signalling is essential for homing of germ cells to newly developing bodies. S1P is generated by sphingosine kinase in the developing germ cell niche and degraded by lipid phosphate phosphatase in somatic tissues. These results demonstrate a previously unknown role of the S1P signalling pathway in germ cell migration in the ascidian Botryllus schlosseri
Continuous cocrystallization of benzoic acid and isonicotinamide by mixing-induced supersaturation : exploring opportunities between reactive and antisolvent crystallization concepts
This study combines reactive and antisolvent crystallization concepts via mixing-induced supersaturation to demonstrate a wider range of options for solvent system selection in multicomponent crystallization. This approach was applied to investigate continuous crystallization of 1:1 and 2:1 cocrystals of benzoic acid and isonicotinamide. Design of Experiments was used to identify conditions where pure cocrystal phases are obtained and a continuous mixing-induced cocrystallization process was implemented to selectively produce either 1:1 or 2:1 cocrystals
Jost Function for Singular Potentials
An exact method for direct calculation of the Jost function and Jost
solutions for a repulsive singular potential is presented. Within this method
the Schrodinger equation is replaced by an equivalent system of linear
first-order differential equations, which after complex rotation, can easily be
solved numerically. The Jost function can be obtained to any desired accuracy
for all complex momenta of physical interest, including the spectral points
corresponding to bound and resonant states. The method can also be used in the
complex angular-momentum plane to calculate the Regge trajectories. The
effectiveness of the method is demonstrated using the Lennard-Jones (12,6)
potential. The spectral properties of the realistic inter-atomic He4-He4
potentials HFDHE2 and HFD-B of Aziz and collaborators are also investigated.Comment: 12 pages, latex, 2 eps-figures, submitted to Phys.Rev.
Phase II Proof-of-Concept Trial of the Orexin Receptor Antagonist Filorexant (MK-6096) in Patients with Major Depressive Disorder.
BackgroundWe evaluated the orexin receptor antagonist filorexant (MK-6096) for treatment augmentation in patients with major depressive disorder.MethodsWe conducted a 6-week, double-blind, placebo-controlled, parallel-group, Phase II, proof-of-concept study. Patients with major depressive disorder (partial responders to ongoing antidepressant therapy) were randomized 1:1 to once-daily oral filorexant 10 mg or matching placebo.ResultsDue to enrollment challenges, the study was terminated early, resulting in insufficient statistical power to detect a prespecified treatment difference; of 326 patients planned, 129 (40%) were randomized and 128 took treatment. There was no statistically significant difference in the primary endpoint of change from baseline to week 6 in Montgomery Asberg Depression Rating Scale total score; the estimated treatment difference for filorexant-placebo was -0.7 (with negative values favoring filorexant) (P=.679). The most common adverse events were somnolence and suicidal ideation.ConclusionsThe interpretation of the results is limited by the enrollment, which was less than originally planned, but the available data do not suggest efficacy of orexin receptor antagonism with filorexant for the treatment of depression. (Clinical Trial Registry: clinicaltrials.gov: NCT01554176)
Semiclassical ionization dynamics of the hydrogen molecular ion in an electric field of arbitrary orientation
Quasi-static models of barrier suppression have played a major role in our
understanding of the ionization of atoms and molecules in strong laser fields.
Despite their success, in the case of diatomic molecules these studies have so
far been restricted to fields aligned with the molecular axis. In this paper we
investigate the locations and heights of the potential barriers in the hydrogen
molecular ion in an electric field of arbitrary orientation. We find that the
barriers undergo bifurcations as the external field strength and direction are
varied. This phenomenon represents an unexpected level of intricacy even on
this most elementary level of the dynamics. We describe the dynamics of
tunnelling ionization through the barriers semiclassically and use our results
to shed new light on the success of a recent theory of molecular tunnelling
ionization as well as earlier theories that restrict the electric field to be
aligned with the molecular axis
Why Are Male Social Relationships Complex in the Doubtful Sound Bottlenose Dolphin Population?
Copyright 2008 Elsevier B.V., All rights reserved.Peer reviewedPublisher PD
- …
