14,682 research outputs found
The Evolution of Overconfidence
Confidence is an essential ingredient of success in a wide range of domains
ranging from job performance and mental health, to sports, business, and
combat. Some authors have suggested that not just confidence but
overconfidence-believing you are better than you are in reality-is advantageous
because it serves to increase ambition, morale, resolve, persistence, or the
credibility of bluffing, generating a self-fulfilling prophecy in which
exaggerated confidence actually increases the probability of success. However,
overconfidence also leads to faulty assessments, unrealistic expectations, and
hazardous decisions, so it remains a puzzle how such a false belief could
evolve or remain stable in a population of competing strategies that include
accurate, unbiased beliefs. Here, we present an evolutionary model showing
that, counter-intuitively, overconfidence maximizes individual fitness and
populations will tend to become overconfident, as long as benefits from
contested resources are sufficiently large compared to the cost of competition.
In contrast, "rational" unbiased strategies are only stable under limited
conditions. The fact that overconfident populations are evolutionarily stable
in a wide range of environments may help to explain why overconfidence remains
prevalent today, even if it contributes to hubris, market bubbles, financial
collapses, policy failures, disasters, and costly wars.Comment: Supplementary Information include
Selection of gonadotrophin surge attenuating factor phage antibodies by bioassay
Peer reviewedPublisher PD
Studies in the use of cloud type statistics in mission simulation
A study to further improve NASA's global cloud statistics for mission simulation is reported. Regional homogeneity in cloud types was examined; most of the original region boundaries defined for cloud cover amount in previous studies were supported by the statistics on cloud types and the number of cloud layers. Conditionality in cloud statistics was also examined with special emphasis on temporal and spatial dependencies, and cloud type interdependence. Temporal conditionality was found up to 12 hours, and spatial conditionality up to 200 miles; the diurnal cycle in convective cloudiness was clearly evident. As expected, the joint occurrence of different cloud types reflected the dynamic processes which form the clouds. Other phases of the study improved the cloud type statistics for several region and proposed a mission simulation scheme combining the 4-dimensional atmospheric model, sponsored by MSFC, with the global cloud model
Estimation of the geophysical properties of the ocean surface using aircraft microwave measurements
An improved model of the effects of sea state on microwave signature has been developed which incorporates the different effects of whitecaps and streaks to define the response of microwave channels to wind speed. This model has been demonstrated to agree with recent measurements. An approximation model has also been incorporated to describe the effects of precipitation on microwave radiation through a computationally rapid routine. The use of these models and a new technique to allow the selection of the most climatologically appropriate D-matrix is demonstrated in the inversion of data collected over the bering Sea. Surface wind speed agrees very well with observations while good results are obtained for integrated water vapor, and liquid water
Engaging the articulators enhances perception of concordant visible speech movements
PURPOSE
This study aimed to test whether (and how) somatosensory feedback signals from the vocal tract affect concurrent unimodal visual speech perception.
METHOD
Participants discriminated pairs of silent visual utterances of vowels under 3 experimental conditions: (a) normal (baseline) and while holding either (b) a bite block or (c) a lip tube in their mouths. To test the specificity of somatosensory-visual interactions during perception, we assessed discrimination of vowel contrasts optically distinguished based on their mandibular (English /ɛ/-/æ/) or labial (English /u/-French /u/) postures. In addition, we assessed perception of each contrast using dynamically articulating videos and static (single-frame) images of each gesture (at vowel midpoint).
RESULTS
Engaging the jaw selectively facilitated perception of the dynamic gestures optically distinct in terms of jaw height, whereas engaging the lips selectively facilitated perception of the dynamic gestures optically distinct in terms of their degree of lip compression and protrusion. Thus, participants perceived visible speech movements in relation to the configuration and shape of their own vocal tract (and possibly their ability to produce covert vowel production-like movements). In contrast, engaging the articulators had no effect when the speaking faces did not move, suggesting that the somatosensory inputs affected perception of time-varying kinematic information rather than changes in target (movement end point) mouth shapes.
CONCLUSIONS
These findings suggest that orofacial somatosensory inputs associated with speech production prime premotor and somatosensory brain regions involved in the sensorimotor control of speech, thereby facilitating perception of concordant visible speech movements.
SUPPLEMENTAL MATERIAL
https://doi.org/10.23641/asha.9911846R01 DC002852 - NIDCD NIH HHSAccepted manuscrip
Global control and fast solid-state donor electron spin quantum computing
We propose a scheme for quantum information processing based on donor
electron spins in semiconductors, with an architecture complementary to the
original Kane proposal. We show that a naive implementation of electron spin
qubits provides only modest improvement over the Kane scheme, however through
the introduction of global gate control we are able to take full advantage of
the fast electron evolution timescales. We estimate that the latent clock speed
is 100-1000 times that of the nuclear spin quantum computer with the ratio
approaching the level.Comment: 9 pages, 9 figure
Fragility Curves for Assessing the Resilience of Electricity Networks Constructed from an Extensive Fault Database
Robust infrastructure networks are vital to ensure community resilience; their failure leads to severe societal disruption and they have important postdisaster functions. However, as these networks consist of interconnected, but geographically-distributed, components, system resilience is difficult to assess. In this paper the authors propose the use of an extension to the catastrophe (CAT) risk modeling approach, which is primarily used to perform risk assessments of independent assets, to be adopted for these interdependent systems. To help to achieve this, fragility curves, a crucial element of CAT models, are developed for overhead electrical lines using an empirical approach to ascribe likely failures due to wind storm hazard. To generate empirical fragility curves for electrical overhead lines, a dataset of over 12,000 electrical failures is coupled to a European reanalysis (ERA) wind storm model, ERA-Interim. The authors consider how the spatial resolution of the electrical fault data affects these curves, generating a fragility curve with low resolution fault data with a R2R2 value of 0.9271 and improving this to a R2R2 value of 0.9889 using higher spatial resolution data. Recommendations for deriving similar fragility curves for other infrastructure systems and/or hazards using the same methodological approach are also made. The authors argue that the developed fragility curves are applicable to other regions with similar electrical infrastructure and wind speeds, although some additional calibration may be required
A Simple Theory of Condensation
A simple assumption of an emergence in gas of small atomic clusters
consisting of particles each, leads to a phase separation (first order
transition). It reveals itself by an emergence of ``forbidden'' density range
starting at a certain temperature. Defining this latter value as the critical
temperature predicts existence of an interval with anomalous heat capacity
behaviour . The value suggested in literature
yields the heat capacity exponent .Comment: 9 pages, 1 figur
Analysis of aircraft microwave measurements of the ocean surface
A data system was developed to process, from calibrated brightness temperature to computation of estimated parameters, the microwave measurements obtained by the NASA CV-990 aircraft during the 1972 Meteorological Expedition. A primary objective of the study was the implementation of an integrated software system at the computing facility of NASA/GSFC, and its application to the 1972 data. A single test case involving measurements away from and over a heavy rain cell was chosen to examine the effect of clouds upon the ability to infer ocean surface parameters. The results indicate substantial agreement with those of the theoretical study; namely, that the values obtained for the surface properties are consistent with available ground-truth information, and are reproducible except within the heaviest portions of the rain cell, at which nonlinear (or saturation) effects become apparent. Finally, it is seen that uncorrected instrumental effects introduce systematic errors which may limit the accuracy of the method
- …
