6,810 research outputs found
Development of polymer network of phenolic and epoxies resins mixed with linseed oil: pilot study
Epoxy resin was mixed with phenolic resins in different percentages by weight. Composite 40/60 means the proportion by weight of epoxy resin is 40 percent. It was found that only composites 50/50 and 40/60 could be cured in ambient conditions. Dynamic mechanical analysis showed that only these two composites form interpenetrating polymer network. The addition of linseed oil to the two resins results also in the formation of interpenetrating network irrespective of proportion by weight of the resins; the mechanical properties will only be better when the percentage by weight of epoxy resin is higher; the aim of reducing cost and at the same time maintaining the mechanical properties cannot be fully achieved because epoxy resin is much more expensive than its counterpart
Signatures of a Pressure-Induced Topological Quantum Phase Transition in BiTeI
We report the observation of two signatures of a pressure-induced topological
quantum phase transition in the polar semiconductor BiTeI using x-ray powder
diffraction and infrared spectroscopy. The x-ray data confirm that BiTeI
remains in its ambient-pressure structure up to 8 GPa. The lattice parameter
ratio c/a shows a minimum between 2.0-2.9 GPa, indicating an enhanced c-axis
bonding through pz band crossing as expected during the transition. Over the
same pressure range, the infrared spectra reveal a maximum in the optical
spectral weight of the charge carriers, reflecting the closing and reopening of
the semiconducting band gap. Both of these features are characteristics of a
topological quantum phase transition, and are consistent with a recent
theoretical proposal.Comment: revised final versio
Initialization by measurement of a two-qubit superconducting circuit
We demonstrate initialization by joint measurement of two transmon qubits in
3D circuit quantum electrodynamics. Homodyne detection of cavity transmission
is enhanced by Josephson parametric amplification to discriminate the two-qubit
ground state from single-qubit excitations non-destructively and with 98.1%
fidelity. Measurement and postselection of a steady-state mixture with 4.7%
residual excitation per qubit achieve 98.8% fidelity to the ground state, thus
outperforming passive initialization.Comment: 5 pages, 4 figures, and Supplementary Information (7 figures, 1
table
A Tunable Anomalous Hall Effect in a Non-Ferromagnetic System
We measure the low-field Hall resistivity of a magnetically-doped
two-dimensional electron gas as a function of temperature and
electrically-gated carrier density. Comparing these results with the carrier
density extracted from Shubnikov-de Haas oscillations reveals an excess Hall
resistivity that increases with decreasing temperature. This excess Hall
resistivity qualitatively tracks the paramagnetic polarization of the sample,
in analogy to the ferromagnetic anomalous Hall effect. The data are consistent
with skew-scattering of carriers by disorder near the crossover to
localization
Horizontal rotation signals detected by "G-Pisa" ring laser for the Mw=9.0, March 2011, Japan earthquake
We report the observation of the ground rotation induced by the Mw=9.0, 11th
of March 2011, Japan earthquake. The rotation measurements have been conducted
with a ring laser gyroscope operating in a vertical plane, thus detecting
rotations around the horizontal axis. Comparison of ground rotations with
vertical accelerations from a co-located force-balance accelerometer shows
excellent ring laser coupling at periods longer than 100s. Under the plane wave
assumption, we derive a theoretical relationship between horizontal rotation
and vertical acceleration for Rayleigh waves. Due to the oblique mounting of
the gyroscope with respect to the wave direction-of-arrival, apparent
velocities derived from the acceleration / rotation rate ratio are expected to
be always larger than, or equal to the true wave propagation velocity. This
hypothesis is confirmed through comparison with fundamental-mode, Rayleigh wave
phase velocities predicted for a standard Earth model.Comment: Accepted for publication in Journal of Seismolog
Unusual photoemission resonances of oxygen-dopant induced states in BiSrCaCuO
We have performed an angular-resolved photoemission study of underdoped,
optimally doped and overdoped BiSrCaCuO samples using a
wide photon energy range (15 - 100 eV). We report a small and broad
non-dispersive A peak in the energy distribution curves whose intensity
scales with doping. We attribute it to a local impurity state similar to the
one observed recently by scanning tunneling spectroscopy and identified as the
oxygen dopants. Detailed analysis of the resonance profile and comparison with
the single-layered BiSrCuO suggest a mixing of this local
state with Cu via the apical oxygens.Comment: 4 pages, 4 figure
Anomalous physical properties of underdoped weak-ferromagnetic superconductor RuSrEuCuO
Similar to the optimal-doped, weak-ferromagnetic (WFM induced by canted
antiferromagnetism, T = 131 K) and superconducting (T = 56 K)
RuSrGdCuO, the underdoped RuSrEuCuO
(T = 133 K, T = 36 K) also exhibited a spontaneous vortex state
(SVS) between 16 K and 36 K. The low field (20 G) superconducting
hysteresis loop indicates a weak and narrow Meissner state region of average
lower critical field B(T) = B(0)[1 -
(T/T)], with B(0) = 7 G and T = 16 K. The
vortex melting transition (T = 21 K) below T obtained from
the broad resistivity drop and the onset of diamagnetic signal indicates a
vortex liquid region due to the coexistence and interplay between
superconductivity and WFM order. No visible jump in specific heat was observed
near T for Eu- and Gd-compound. This is not surprising, since the
electronic specific heat is easily overshadowed by the large phonon and
weak-ferromagnetic contributions. Furthermore, a broad resistivity transition
due to low vortex melting temperature would also lead to a correspondingly
reduced height of any specific heat jump. Finally, with the baseline from the
nonmagnetic Eu-compound, specific heat data analysis confirms the magnetic
entropy associated with antiferromagnetic ordering of Gd (J = S = 7/2)
at 2.5 K to be close to ln8 as expected.Comment: 7 figure
Perceptual learning and inversion effects: Recognition of prototype-defined familiar checkerboards.
PublishedJournal ArticleResearch Support, Non-U.S. Gov'tThe face inversion effect is a defection in performance in recognizing inverted faces compared with faces presented in their usual upright orientation typically believed to be specific for facial stimuli. McLaren (1997) was able to demonstrate that (a) an inversion effect could be obtained with exemplars drawn from a familiar category, such that upright exemplars were better discriminated than inverted exemplars; and (b) that the inversion effect required that the familiar category be prototype-defined. In this article, we replicate and extend these findings. We show that the inversion effect can be obtained in a standard old/new recognition memory paradigm, demonstrate that it is contingent on familiarization with a prototype-defined category, and establish that the effect is made up of two components. We confirm the advantage for upright exemplars drawn from a familiar, prototype-defined category, and show that there is a disadvantage for inverted exemplars drawn from this category relative to suitable controls. We also provide evidence that there is an N170 event-related potential signature for this effect. These results allow us to integrate a theory of perceptual learning originally proposed by McLaren, Kaye, and Mackintosh (1989) with explanations of the face inversion effect, first reported by Yin.University of ExeterNational Key Fundamental Research (973) Progra
- …
