17,216 research outputs found

    Time-dependent coupled-cluster method for atomic nuclei

    Full text link
    We study time-dependent coupled-cluster theory in the framework of nuclear physics. Based on Kvaal's bi-variational formulation of this method [S. Kvaal, arXiv:1201.5548], we explicitly demonstrate that observables that commute with the Hamiltonian are conserved under time evolution. We explore the role of the energy and of the similarity-transformed Hamiltonian under real and imaginary time evolution and relate the latter to similarity renormalization group transformations. Proof-of-principle computations of He-4 and O-16 in small model spaces, and computations of the Lipkin model illustrate the capabilities of the method.Comment: 10 pages, 9 pdf figure

    Extended nonlocal chiral-quark model for the heavy-light quark systems

    Full text link
    In this talk, we report the recent progress on constructing a phenomenological effective model for the heavy-light quark systems, which consist of (u,d,s,c,b) quarks, i.e. extended nonlocal chiral-quark model (ExNLChQM). We compute the heavy-meson weak-decay constants to verify the validity of the model. From the numerical results, it turns out that (f_D, f_B, f_{D_s}, f_{B_s})=(207.54,208.13,262.56,262.39) MeV. These values are in relatively good agreement with experimental data and various theoretical estimations.Comment: 3 pages, 4 figures, Talk given at the 20th International IUPAP Conference on Few-Body Problems in Physics (FB20), 20~25 August 2012, Fukuoka, Japa

    Multilayered plasmonic nanostructures for solar energy harvesting

    Full text link
    Optical properties of core-shell-shell Au@SiO2@Au nanostructures and their solar energy harvesting applications are theoretically investigated using Mie theory and heat transfer equations. The theoretical analysis associated with size-dependent modification of the bulk gold dielectric function agrees well with previous experimental results. We use the appropriate absorption cross-section to determine the solar energy absorption efficiency of the nano-heterostructures, which is strongly structure-dependent, and to predict the time-dependent temperature increase of the nanoshell solution under simulated solar irradiation. Comparisons to prior temperature measurements and theoretical evaluation of the solar power conversion efficiency are discussed to provide new insights into underlying mechanisms. Our approach would accelerate materials and structure testing in solar energy harvesting.Comment: 6 figures, 6 pages, Just accepted in Journal of Physical Chemistry

    Free Energy Approach to the Formation of an Icosahedral Structure during the Freezing of Gold Nanoclusters

    Full text link
    The freezing of metal nanoclusters such as gold, silver, and copper exhibits a novel structural evolution. The formation of the icosahedral (Ih) structure is dominant despite its energetic metastability. This important phenomenon, hitherto not understood, is studied by calculating free energies of gold nanoclusters. The structural transition barriers have been determined by using the umbrella sampling technique combined with molecular dynamics simulations. Our calculations show that the formation of Ih gold nanoclusters is attributed to the lower free energy barrier from the liquid to the Ih phases compared to the barrier from the liquid to the face-centered-cubic crystal phases

    Propagation of Exchange Bias in CoFe/FeMn/CoFe Trilayers

    Full text link
    CoFe/FeMn, FeMn/CoFe bilayers and CoFe/FeMn/CoFe trilayers were grown in magnetic field and at room temperature. The exchange bias field HebH_{eb} depends strongly on the order of depositions and is much higher at CoFe/FeMn than at FeMn/CoFe interfaces. By combining the two bilayer structures into symmetric CoFe/FeMn(tFeMnt_\mathrm{FeMn})/CoFe trilayers, HebtH_{eb}^t and HebbH_{eb}^b of the top and bottom CoFe layers, respectively, are both enhanced. Reducing tFeMnt_\mathrm{FeMn} of the trilayers also results in enhancements of both HebbH_{eb}^b and HebtH_{eb}^t. These results evidence the propagation of exchange bias between the two CoFe/FeMn and FeMn/CoFe interfaces mediated by the FeMn antiferromagnetic order

    Pairing Reentrance Phenomenon in Heated Rotating Nuclei in the Shell Model Monte Carlo Approach

    Full text link
    Rotational motion of heated 72-Ge is studied within the microscopic Shell Model Monte Carlo approach. We investigate the the angular momentum alignment and nuclear pairing correlations associated with J-pi Cooper pairs as a function of the rotational frequency and temperature. The reentrance of pairing correlations with temperature is predicted at high rotational frequencies. It manifests itself through the anomalous behavior of specific heat and level density.Comment: 4 pages; 4 figure
    corecore