325 research outputs found
Pteridine-2,4-diamine derivatives as radical scavengers and inhibitors of lipoxygenase that can possess anti-inflammatory properties
BACKGROUND: Reactive oxygen species are associated with inflammation implicated in cancer, atherosclerosis and autoimmune diseases. The complex nature of inflammation and of oxidative stress suggests that dual-target agents may be effective in combating diseases involving reactive oxygen species. RESULTS: A novel series of N-substituted 2,4-diaminopteridines has been synthesized and evaluated as antioxidants in several assays. Many exhibited potent lipid antioxidant properties, and some are inhibitors of soybean lipoxygenase, IC50 values extending down to 100 nM for both targets. Several pteridine derivatives showed efficacy at 0.01 mmol/kg with little tissue damage in a rat model of colitis. 2-(4-methylpiperazin-1-yl)-N-(thiophen-2-ylmethyl)pteridin-4-amine (18f) at 0.01 mmol/kg exhibited potent anti-inflammatory activity (reduction by 41%). CONCLUSION: The 2,4-diaminopteridine core represents a new scaffold for lipoxygenase inhibition as well as sustaining anti-inflammatory properties
Synthesis and biological evaluation of new quinoxaline derivatives as antioxidant and anti-inflammatory agents
We report the synthesis, anti-inflammatory and antioxidant activities of novel quinoxaline and quinoxaline 1,4-di-N-oxide derivatives. Microwave assisted methods have been used in order to optimize reaction times and to improve the yields. The tested compounds presented important scavenging activities and promising in vitro inhibition of soybean lipoxygenase. Two of the best lipoxygenase inhibitors (compounds 7b and 8f) were evaluated as in vivo anti-inflammatory agents using the carrageenin-induced edema model. One of them (compound 7b) showed important in vivo anti-inflammatory effect (41%) similar to that of indomethacin (47%) used as the reference drug
Exploiting members of the BAHD acyltransferase family to synthesize multiple hydroxycinnamate and benzoate conjugates in yeast
BACKGROUND: BAHD acyltransferases, named after the first four biochemically characterized enzymes of the group, are plant-specific enzymes that catalyze the transfer of coenzyme A-activated donors onto various acceptor molecules. They are responsible for the synthesis in plants of a myriad of secondary metabolites, some of which are beneficial for humans either as therapeutics or as specialty chemicals such as flavors and fragrances. The production of pharmaceutical, nutraceutical and commodity chemicals using engineered microbes is an alternative, green route to energy-intensive chemical syntheses that consume petroleum-based precursors. However, identification of appropriate enzymes and validation of their functional expression in heterologous hosts is a prerequisite for the design and implementation of metabolic pathways in microbes for the synthesis of such target chemicals. RESULTS: For the synthesis of valuable metabolites in the yeast Saccharomyces cerevisiae, we selected BAHD acyltransferases based on their preferred donor and acceptor substrates. In particular, BAHDs that use hydroxycinnamoyl-CoAs and/or benzoyl-CoA as donors were targeted because a large number of molecules beneficial to humans belong to this family of hydroxycinnamate and benzoate conjugates. The selected BAHD coding sequences were synthesized and cloned individually on a vector containing the Arabidopsis gene At4CL5, which encodes a promiscuous 4-coumarate:CoA ligase active on hydroxycinnamates and benzoates. The various S. cerevisiae strains obtained for co-expression of At4CL5 with the different BAHDs effectively produced a wide array of valuable hydroxycinnamate and benzoate conjugates upon addition of adequate combinations of donors and acceptor molecules. In particular, we report here for the first time the production in yeast of rosmarinic acid and its derivatives, quinate hydroxycinnamate esters such as chlorogenic acid, and glycerol hydroxycinnamate esters. Similarly, we achieved for the first time the microbial production of polyamine hydroxycinnamate amides; monolignol, malate and fatty alcohol hydroxycinnamate esters; tropane alkaloids; and benzoate/caffeate alcohol esters. In some instances, the additional expression of Flavobacterium johnsoniae tyrosine ammonia-lyase (FjTAL) allowed the synthesis of p-coumarate conjugates and eliminated the need to supplement the culture media with 4-hydroxycinnamate. CONCLUSION: We demonstrate in this study the effectiveness of expressing members of the plant BAHD acyltransferase family in yeast for the synthesis of numerous valuable hydroxycinnamate and benzoate conjugates
N-Acylated and N-Alkylated 2-Aminobenzothiazoles Are Novel Agents That Suppress the Generation of Prostaglandin E2.
The quest for novel agents to regulate the generation of prostaglandin E2 (PGE2) is of high importance because this eicosanoid is a key player in inflammatory diseases. We synthesized a series of N-acylated and N-alkylated 2-aminobenzothiazoles and related heterocycles (benzoxazoles and benzimidazoles) and evaluated their ability to suppress the cytokine-stimulated generation of PGE2 in rat mesangial cells. 2-Aminobenzothiazoles, either acylated by the 3-(naphthalen-2-yl)propanoyl moiety (GK510) or N-alkylated by a chain carrying a naphthalene (GK543) or a phenyl moiety (GK562) at a distance of three carbon atoms, stand out in inhibiting PGE2 generation, with EC50 values ranging from 118 nM to 177 nM. Both GK510 and GK543 exhibit in vivo anti-inflammatory activity greater than that of indomethacin. Thus, N-acylated or N-alkylated 2-aminobenzothiazoles are novel leads for the regulation of PGE2 formation
Spinal infection: state of the art and management algorithm
Spinal infection is a rare pathology although a concerning rising incidence has been observed in recent years. This increase might reflect a progressively more susceptible population but also the availability of increased diagnostic accuracy. Yet, even with improved diagnosis tools and procedures, the delay in diagnosis remains an important issue. This review aims to highlight the importance of a methodological attitude towards accurate and prompt diagnosis using an algorithm to aid on spinal infection management.
METHODS:
Appropriate literature on spinal infection was selected using databases from the US National Library of Medicine and the National Institutes of Health.
RESULTS:
Literature reveals that histopathological analysis of infected tissues is a paramount for diagnosis and must be performed routinely. Antibiotic therapy is transversal to both conservative and surgical approaches and must be initiated after etiological diagnosis. Indications for surgical treatment include neurological deficits or sepsis, spine instability and/or deformity, presence of epidural abscess and upon failure of conservative treatment.
CONCLUSIONS:
A methodological assessment could lead to diagnosis effectiveness of spinal infection. Towards this, we present a management algorithm based on literature findings
The spine in Paget’s disease
Paget’s disease (PD) is a chronic metabolically active bone disease, characterized by a disturbance in bone modelling and remodelling due to an increase in osteoblastic and osteoclastic activity. The vertebra is the second most commonly affected site. This article reviews the various spinal pathomechanisms and osseous dynamics involved in producing the varied imaging appearances and their clinical relevance. Advanced imaging of osseous, articular and bone marrow manifestations of PD in all the vertebral components are presented. Pagetic changes often result in clinical symptoms including back pain, spinal stenosis and neural dysfunction. Various pathological complications due to PD involvement result in these clinical symptoms. Recognition of the imaging manifestations of spinal PD and the potential complications that cause the clinical symptoms enables accurate assessment of patients prior to appropriate management
Synthesis, antioxidant properties and neuroprotection of α-phenyl-tert-butylnitrone derived HomoBisNitrones in in vitro and in vivo ischemia models
We herein report the synthesis, antioxidant power and neuroprotective properties of nine homo-bis-nitrones HBNs1–9 as alpha-phenyl-N-tert-butylnitrone (PBN) analogues for stroke therapy. In vitro neuroprotection studies of HBNs1–9 against Oligomycin A/Rotenone and in an oxygen-glucose-deprivation model of ischemia in human neuroblastoma cell cultures, indicate that (1Z,1′Z)-1,1′-(1,3-phenylene)bis(N-benzylmethanimine oxide) (HBN6) is a potent neuroprotective agent that prevents the decrease in neuronal metabolic activity (EC = 1.24 ± 0.39 μM) as well as necrotic and apoptotic cell death. HBN6 shows strong hydroxyl radical scavenger power (81%), and capacity to decrease superoxide production in human neuroblastoma cell cultures (maximal activity = 95.8 ± 3.6%), values significantly superior to the neuroprotective and antioxidant properties of the parent PBN. The higher neuroprotective ability of HBN6 has been rationalized by means of Density Functional Theory calculations. Calculated physicochemical and ADME properties confirmed HBN6 as a hit-agent showing suitable drug-like properties. Finally, the contribution of HBN6 to brain damage prevention was confirmed in a permanent MCAO setting by assessing infarct volume outcome 48 h after stroke in drug administered experimental animals, which provides evidence of a significant reduction of the brain lesion size and strongly suggests that HBN6 is a potential neuroprotective agent against stroke.We would like to thank Soledad Martinez Montero for the excellent technical assistance. This work was supported
by grants from the Spanish Ministry of Economy and Competitiveness (SAF2015-65586-R to JMC; CTQ2016-
78205-P and CTQ2016-81797-REDC to IF, and NEUROCENTRO-CM S2017/BMD3760 to RMM and DNG),
and Camilo José Cela University (UCJC-2018-04) to MJOG. DDI thanks the University of Alcalá and Spanish
Ministry of Science, Innovation and Universities for pre-doctoral FPU grants. BCG thanks the Spanish Ministr
Infectious spondylodiscitis: has there been any evolution in the diagnostic and treatment outcomes?
Chemical targeting of the ATXN1 aa99–163 interaction site suppresses polyQ-expanded protein dimerization
Spinocerebellar ataxia type 1 (SCA1) is a neurodegenerative disease caused by the expansion of a polyglutamine (polyQ) tract in the ATXN1 protein. This expansion is thought to be responsible for the gradual aggregation of the mutant protein, which is associated with increased cytotoxicity and neuronal cell death. Apart from the polyQ tract, other domains in ATXN1 are also involved in the initial events of protein aggregation, such as a dimerization domain that promotes protein oligomerization. ATXN1 interacts with various proteins; among them, MED15 significantly enhances the aggregation of the polyQ-expanded protein. Therefore, we set to identify the interaction site between ATXN1 and MED15 and assess whether its chemical targeting would affect polyQ protein aggregation. First, we predicted the structures of ATXN1 and MED15 and simulated their interaction. We experimentally validated that amino acids (aa) 99–163 of ATXN1 and aa548–665 of MED15 are critical for this protein–protein interaction (PPI). We also showed that the aa99–163 domain in ATXN1 is involved in the dimerization of the mutant isoform. Targeting this domain with a chemical compound identified through virtual screening (Chembridge ID: 5755483) inhibited both the interaction of ATXN1 with MED15 and the dimerization of polyQ-expanded ATXN1. These results strengthen our assumption that the aa99–163 domain of ATXN1 may be involved in polyQ protein aggregation and highlight compound 5755483 as a potent first-in-class therapeutic agent for SCA1
Studying the association between musculoskeletal disorders, quality of life and mental health. A primary care pilot study in rural Crete, Greece
<p>Abstract</p> <p>Background</p> <p>The burden of musculoskeletal disorders (MSD) on the general health and well-being of the population has been documented in various studies. The objective of this study was to explore the association between MSD and the quality of life and mental health of patients and to discuss issues concerning care seeking patterns in rural Greece.</p> <p>Methods</p> <p>Patients registered at one rural Primary Care Centre (PCC) in Crete were invited to complete the Nordic Musculoskeletal Questionnaire (NMQ) for the analysis of musculoskeletal symptoms, together with validated instruments for measuring health related quality of life (SF-36) and mental distress (GHQ-28).</p> <p>Results</p> <p>The prevalence rate of MSD was found to be 71.2%, with low back and knee pain being the most common symptoms. Most conditions significantly impaired the quality of life, especially the physical dimensions of SF-36. Depression was strongly correlated to most MSD (<it>p </it>< 0.001). Multiple logistic analyses revealed that patients who consulted the PCC due to MSD were likely to have more mental distress or impaired physical functioning compared to those who did not.</p> <p>Conclusion</p> <p>Musculoskeletal disorders were common in patients attending the rural PCC of this study and were associated with a poor quality of life and mental distress that affected their consultation behaviour.</p
- …
