167 research outputs found

    Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition.

    Get PDF
    Mutations of the tricarboxylic acid cycle enzyme fumarate hydratase cause hereditary leiomyomatosis and renal cell cancer. Fumarate hydratase-deficient renal cancers are highly aggressive and metastasize even when small, leading to a very poor clinical outcome. Fumarate, a small molecule metabolite that accumulates in fumarate hydratase-deficient cells, plays a key role in cell transformation, making it a bona fide oncometabolite. Fumarate has been shown to inhibit α-ketoglutarate-dependent dioxygenases that are involved in DNA and histone demethylation. However, the link between fumarate accumulation, epigenetic changes, and tumorigenesis is unclear. Here we show that loss of fumarate hydratase and the subsequent accumulation of fumarate in mouse and human cells elicits an epithelial-to-mesenchymal-transition (EMT), a phenotypic switch associated with cancer initiation, invasion, and metastasis. We demonstrate that fumarate inhibits Tet-mediated demethylation of a regulatory region of the antimetastatic miRNA cluster mir-200ba429, leading to the expression of EMT-related transcription factors and enhanced migratory properties. These epigenetic and phenotypic changes are recapitulated by the incubation of fumarate hydratase-proficient cells with cell-permeable fumarate. Loss of fumarate hydratase is associated with suppression of miR-200 and the EMT signature in renal cancer and is associated with poor clinical outcome. These results imply that loss of fumarate hydratase and fumarate accumulation contribute to the aggressive features of fumarate hydratase-deficient tumours.This work was supported by the Medical Research Council (UK). S.F. was supported by a Herchel Smith Research Studentship and K.F. by an MRC Career Development Award. E.R.M is supported by the ERC Advanced Researcher award 323004–ONCOTREAT. P.H.M. is supported by Senior Investigator Awards from the Wellcome Trust and NIHR. The Cambridge Human Research Tissue Bank and A.W. are supported by the NIHR Cambridge Biomedical Research Centre.This is the author accepted manuscript. The final version is available from Nature Publishing at http://dx.doi.org/10.1038/nature19353

    Exercise Capacity in Patients With Obstructive Hypertrophic Cardiomyopathy:SEQUOIA-HCM Baseline Characteristics and Study Design

    Get PDF
    Patients with obstructive hypertrophic cardiomyopathy (oHCM) have increased risk of arrhythmia, stroke, heart failure, and sudden death. Contemporary management of oHCM has decreased annual hospitalization and mortality rates, yet patients have worsening health-related quality of life due to impaired exercise capacity and persistent residual symptoms. Here we consider the design of clinical trials evaluating potential oHCM therapies in the context of SEQUOIA-HCM (Safety, Efficacy, and Quantitative Understanding of Obstruction Impact of Aficamten in HCM). This large, phase 3 trial is now fully enrolled (N = 282). Baseline characteristics reflect an ethnically diverse population with characteristics typical of patients encountered clinically with substantial functional and symptom burden. The study will assess the effect of aficamten vs placebo, in addition to standard-of-care medications, on functional capacity and symptoms over 24 weeks. Future clinical trials could model the approach in SEQUOIA-HCM to evaluate the effect of potential therapies on the burden of oHCM. (Safety, Efficacy, and Quantitative Understanding of Obstruction Impact of Aficamten in HCM [SEQUOIA-HCM]; NCT05186818).</p

    Dosing and Safety Profile of Aficamten in Symptomatic Obstructive Hypertrophic Cardiomyopathy:Results From SEQUOIA-HCM

    Get PDF
    BACKGROUND: Aficamten, a novel cardiac myosin inhibitor, reversibly reduces cardiac hypercontractility in obstructive hypertrophic cardiomyopathy. We present a prespecified analysis of the pharmacokinetics, pharmacodynamics, and safety of aficamten in SEQUOIA-HCM (Safety, Efficacy, and Quantitative Understanding of Obstruction Impact of Aficamten in HCM). METHODS AND RESULTS: A total of 282 patients with obstructive hypertrophic cardiomyopathy were randomized 1:1 to daily aficamten (5-20 mg) or placebo between February 1, 2022, and May 15, 2023. Aficamten dosing targeted the lowest effective dose for achieving site-interpreted Valsalva left ventricular outflow tract gradient &lt;30 mm Hg with left ventricular ejection fraction (LVEF) ≥50%. End points were evaluated during titration (day 1 to week 8), maintenance (weeks 8-24), and washout (weeks 24-28), and included major adverse cardiac events, new-onset atrial fibrillation, implantable cardioverter-defibrillator discharges, LVEF &lt;50%, and treatment-emergent adverse events. At week 8, 3.6%, 12.9%, 35%, and 48.6% of patients achieved 5-, 10-, 15-, and 20-mg doses, respectively. Baseline characteristics were similar across groups. Aficamten concentration increased by dose and remained stable during maintenance. During the treatment period, LVEF decreased by -0.9% (95% CI, -1.3 to -0.6) per 100 ng/mL aficamten exposure. Seven (4.9%) patients taking aficamten underwent per-protocol dose reduction for site-interpreted LVEF &lt;50%. There were no treatment interruptions or heart failure worsening for LVEF &lt;50%. No major adverse cardiovascular events were associated with aficamten, and treatment-emergent adverse events were similar between treatment groups, including atrial fibrillation.CONCLUSIONS: A site-based dosing algorithm targeting the lowest effective aficamten dose reduced left ventricular outflow tract gradient with a favorable safety profile throughout SEQUOIA-HCM. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique Identifier: NCT05186818.</p

    Impact of Aficamten on Disease and Symptom Burden in Obstructive Hypertrophic Cardiomyopathy:Results From SEQUOIA-HCM

    Get PDF
    Background: Aficamten is a cardiac myosin inhibitor that mitigates left ventricular outflow gradients in obstructive hypertrophic cardiomyopathy (oHCM). The clinical efficacy of aficamten across multiple outcome domains in oHCM has not been fully defined. Objectives: This responder analysis from the SEQUOIA-HCM (Phase 3 Trial to Evaluate the Efficacy and Safety of Aficamten Compared to Placebo in Adults With Symptomatic oHCM) trial characterizes the clinical impact of aficamten. Methods: Patients who were symptomatic of oHCM were randomized to aficamten (n = 142) or placebo (n = 140) daily for 24 weeks. Outcomes assessed included the proportion of patients with complete hemodynamic response (rest and Valsalva gradient &lt;30 mm Hg and &lt;50 mm Hg, respectively), relief in limiting symptoms (≥1 improvement in NYHA functional class and/or ≥10-point change in Kansas City Cardiomyopathy Questionnaire–Clinical Summary Score), enhanced exercise capacity (≥1.5 mL/kg/min change in peak oxygen uptake), and ≥50% reduction in N-terminal pro–B-type natriuretic peptide. Eligibility for septal reduction therapy was also evaluated. Results: At 24 weeks, patients treated with aficamten vs placebo showed significant improvement in limiting symptoms (71% vs 42%), were more likely to have complete hemodynamic response (68% vs 7%), demonstrated enhanced exercise capacity (47% vs 24%), and showed a decrease ≥50% in N-terminal pro–B-type natriuretic peptide (84% vs 8%) (P ≤ 0.002 for all). An improvement in ≥1 of these outcome measures was achieved in 97% of patients treated with aficamten (vs 59% placebo), including 23% on aficamten who achieved all 4 outcomes compared with none in placebo. Among 32 patients receiving aficamten and 29 patients receiving placebo who were eligible for septal reduction therapy, 28 (88%) from the aficamten group were no longer eligible at 24 weeks compared with 15 (52%) from the placebo group (P = 0.002). Conclusions: Treatment with aficamten was associated with substantial improvements across a broad range of clinically relevant efficacy measures.</p

    Genome-wide association study reveals novel genetic loci:a new polygenic risk score for mitral valve prolapse

    Get PDF
    AIMS: Mitral valve prolapse (MVP) is a common valvular heart disease with a prevalence of >2% in the general adult population. Despite this high incidence, there is a limited understanding of the molecular mechanism of this disease, and no medical therapy is available for this disease. We aimed to elucidate the genetic basis of MVP in order to better understand this complex disorder. METHODS AND RESULTS: We performed a meta-analysis of six genome-wide association studies that included 4884 cases and 434 649 controls. We identified 14 loci associated with MVP in our primary analysis and 2 additional loci associated with a subset of the samples that additionally underwent mitral valve surgery. Integration of epigenetic, transcriptional, and proteomic data identified candidate MVP genes including LMCD1, SPTBN1, LTBP2, TGFB2, NMB, and ALPK3. We created a polygenic risk score (PRS) for MVP and showed an improved MVP risk prediction beyond age, sex, and clinical risk factors. CONCLUSION: We identified 14 genetic loci that are associated with MVP. Multiple analyses identified candidate genes including two transforming growth factor-beta signalling molecules and spectrin beta. We present the first PRS for MVP that could eventually aid risk stratification of patients for MVP screening in a clinical setting. These findings advance our understanding of this common valvular heart disease and may reveal novel therapeutic targets for intervention. KEY QUESTION: Expand our understanding of the genetic basis for mitral valve prolapse (MVP). Uncover relevant pathways and target genes for MVP pathophysiology. Leverage genetic data for MVP risk prediction. KEY FINDING: Sixteen genetic loci were significantly associated with MVP, including 13 novel loci. Interesting target genes at these loci included LTBP2, TGFB2, ALKP3, BAG3, RBM20, and SPTBN1. A risk score including clinical factors and a polygenic risk score, performed best at predicting MVP, with an area under the receiver operating characteristics curve of 0.677. TAKE-HOME MESSAGE: Mitral valve prolapse has a polygenic basis: many genetic variants cumulatively influence pre-disposition for disease. Disease risk may be modulated via changes to transforming growth factor-beta signalling, the cytoskeleton, as well as cardiomyopathy pathways. Polygenic risk scores could enhance the MVP risk prediction
    corecore