2,978 research outputs found

    Close pairs of galaxies with different activity levels

    Full text link
    We selected and studied 180 pairs with dV < 800 km/s and Dp < 60 kpc containing Markarian (MRK) galaxies to investigate the dependence of galaxies' integral parameters, star-formation (SF) and active galactic nuclei (AGN) properties on kinematics of pairs, their structure and large-scale environments. Projected radial separation Dp and perturbation level P are better measures of interaction strength than dV. The latter correlates with the density of large-scale environment and with the morphologies of galaxies. Both galaxies in a pair are of the same nature, the only difference is that MRK galaxies are usually righter than their neighbors. Specific star formation rates (SSFR) of galaxies in pairs with smaller Dp or dV is in average 0.5 dex higher than that of galaxies in pairs with larger Dp or dV. Closeness of a neighbor with the same and later morphological type increases the SSFR, while earlier-type neighbors do not increase SSFR. Major interactions/mergers trigger SF and AGN more effectively than minor ones. The fraction of AGNs is higher in more perturbed pairs and pairs with smaller Dp. AGNs typically are in stronger interacting systems than star-forming and passive galaxies. There are correlations of both SSFRs and spectral properties of nuclei between pair members.Comment: 4 pages, 3 figures. arXiv admin note: substantial text overlap with arXiv:1310.024

    Ferromagnetic Ordering of Energy Levels for Uq(sl2)U_q(\mathfrak{sl}_2) Symmetric Spin Chains

    Full text link
    We consider the class of quantum spin chains with arbitrary Uq(sl2)U_q(\mathfrak{sl}_2)-invariant nearest neighbor interactions, sometimes called SUq(2)\textrm{SU}_q(2) for the quantum deformation of SU(2)\textrm{SU}(2), for q>0q>0. We derive sufficient conditions for the Hamiltonian to satisfy the property we call {\em Ferromagnetic Ordering of Energy Levels}. This is the property that the ground state energy restricted to a fixed total spin subspace is a decreasing function of the total spin. Using the Perron-Frobenius theorem, we show sufficient conditions are positivity of all interactions in the dual canonical basis of Lusztig. We characterize the cone of positive interactions, showing that it is a simplicial cone consisting of all non-positive linear combinations of "cascade operators," a special new basis of Uq(sl2)U_q(\mathfrak{sl}_2) intertwiners we define. We also state applications to interacting particle processes.Comment: 23 page

    The Active Mirror Control of the MAGIC Telescope

    Full text link
    One of the main design goals of the MAGIC telescopes is the very fast repositioning in case of Gamma Ray Burst (GRB) alarms, implying a low weight of the telescope dish. This is accomplished by using a space frame made of carbon fiber epoxy tubes, resulting in a strong but not very rigid support structure. Therefore it is necessary to readjust the individual mirror tiles to correct for deformations of the dish under varying gravitational load while tracking an object. We present the concept of the Active Mirror Control (AMC) as implemented in the MAGIC telescopes and the actual performance reached. Additionally we show that also telescopes using a stiff structure can benefit from using an AMC.Comment: Contribution to the 30th ICRC, Merida, Mexico, July 2007 on behalf of the MAGIC Collaboratio

    Close neighbors of Markarian galaxies. II. Statistics and discussions

    Full text link
    According to the database from the first paper, we select 180 pairs with dV < 800 km/s and Dp < 60 kpc containing Markarian (MRK) galaxies. We study the dependence of galaxies integral parameters, star-formation (SF) and active galactic nuclei (AGN) properties on kinematics of pairs, their structure and large-scale environments. Following main results were obtained: projected radial separation Dp between galaxies correlates with the perturbation level P of the pairs. Both parameters do not correlate with line-of-sight velocity difference dV of galaxies. Dp and P are better measures of interaction strength than dV. The latter correlates with the density of large-scale environment and with the morphologies of galaxies. Both galaxies in a pair are of the same nature, the only difference is that MRK galaxies are usually brighter than their neighbors in average by 0.9 mag. Specific star formation rates (SSFR) of galaxies in pairs with smaller Dp or dV is in average 0.5 dex higher than that of galaxies in pairs with larger Dp or dV. Closeness of a neighbor with the same and later morphological type increases the SSFR, while earlier-type neighbors do not increase SSFR. Major interactions/mergers trigger SF and AGN more effectively than minor ones. The fraction of AGNs is higher in more perturbed pairs and pairs with smaller Dp. AGNs typically are in stronger interacting systems than star-forming and passive galaxies. There are correlations of both SSFRs and spectral properties of nuclei between pair members.Comment: 13 pages, 8 figures, 2 table

    Exact and quasiexact solvability of second-order superintegrable quantum systems: I. Euclidean space preliminaries

    Get PDF
    We show that second-order superintegrable systems in two-dimensional and three-dimensional Euclidean space generate both exactly solvable (ES) and quasiexactly solvable (QES) problems in quantum mechanics via separation of variables, and demonstrate the increased insight into the structure of such problems provided by superintegrability. A principal advantage of our analysis using nondegenerate superintegrable systems is that they are multiseparable. Most past separation of variables treatments of QES problems via partial differential equations have only incorporated separability, not multiseparability. Also, we propose another definition of ES and QES. The quantum mechanical problem is called ES if the solution of Schrödinger equation can be expressed in terms of hypergeometric functions mFn and is QES if the Schrödinger equation admits polynomial solutions with coefficients necessarily satisfying a three-term or higher order of recurrence relations. In three dimensions we give an example of a system that is QES in one set of separable coordinates, but is not ES in any other separable coordinates. This example encompasses Ushveridze's tenth-order polynomial QES problem in one set of separable coordinates and also leads to a fourth-order polynomial QES problem in another separable coordinate set

    Supernovae and their host galaxies - V. The vertical distribution of supernovae in disc galaxies

    Get PDF
    We present an analysis of the height distributions of the different types of supernovae (SNe) from the plane of their host galaxies. We use a well-defined sample of 102 nearby SNe appeared inside high-inclined (i > 85 deg), morphologically non-disturbed S0-Sd host galaxies from the Sloan Digital Sky Survey. For the first time, we show that in all the subsamples of spirals, the vertical distribution of core-collapse (CC) SNe is about twice closer to the plane of host disc than the distribution of SNe Ia. In Sb-Sc hosts, the exponential scale height of CC SNe is consistent with those of the younger stellar population in the Milky Way (MW) thin disc, while the scale height of SNe Ia is consistent with those of the old population in the MW thick disc. We show that the ratio of scale lengths to scale heights of the distribution of CC SNe is consistent with those of the resolved young stars with ages from ~ 10 Myr up to ~ 100 Myr in nearby edge-on galaxies and the unresolved stellar population of extragalactic thin discs. The corresponding ratio for SNe Ia is consistent with the same ratios of the two populations of resolved stars with ages from a few 100 Myr up to a few Gyr and from a few Gyr up to ~ 10 Gyr, as well as with the unresolved population of the thick disc. These results can be explained considering the age-scale height relation of the distribution of stellar population and the mean age difference between Type Ia and CC SNe progenitors.Comment: 11 pages, 6 figures, 6 tables, accepted for publication in MNRA

    Supernovae and their host galaxies - II. The relative frequencies of supernovae types in spirals

    Full text link
    We present an analysis of the relative frequencies of different supernova (SN) types in spirals with various morphologies and in barred or unbarred galaxies. We use a well-defined and homogeneous sample of spiral host galaxies of 692 SNe from the Sloan Digital Sky Survey in different stages of galaxy-galaxy interaction and activity classes of nucleus. We propose that the underlying mechanisms shaping the number ratios of SNe types can be interpreted within the framework of interaction-induced star formation, in addition to the known relations between morphologies and stellar populations. We find a strong trend in behaviour of the NIa/NCC ratio depending on host morphology, such that early spirals include more Type Ia SNe. The NIbc/NII ratio is higher in a broad bin of early-type hosts. The NIa/NCC ratio is nearly constant when changing from normal, perturbed to interacting galaxies, then declines in merging galaxies, whereas it jumps to the highest value in post-merging/remnant galaxies. In contrast, the NIbc/NII ratio jumps to the highest value in merging galaxies and slightly declines in post-merging/remnant subsample. The interpretation is that the star formation rates and morphologies of galaxies, which are strongly affected in the final stages of interaction, have an impact on the number ratios of SNe types. The NIa/NCC (NIbc/NII) ratio increases (decreases) from star-forming to active galactic nuclei (AGN) classes of galaxies. These variations are consistent with the scenario of an interaction-triggered starburst evolving into AGN during the later stages of interaction, accompanied with the change of star formation and transformation of the galaxy morphology into an earlier type.Comment: 14 pages, 9 figures, 16 tables, online dat
    corecore