2,414 research outputs found

    Recent Experiments with Bose-Condensed Gases at JILA

    Full text link
    We consider a binary mixture of two overlapping Bose-Einstein condensates in two different hyperfine states of \Rb87 with nearly identical magnetic moments. Such a system has been simply realized through application of radiofrequency and microwave radiation which drives a two-photon transition between the two states. The nearly identical magnetic moments afford a high degree of spatial overlap, permitting a variety of new experiments. We discuss some of the conditions under which the magnetic moments are identical, with particular emphasis placed on the requirements for a time-averaged orbiting potential (TOP) magnetic trap.Comment: 9 pages, 5 figures; corrected post-publication editio

    Density-Matrix approach to a Strongly Coupled Two-Component Bose-Einstein Condensate

    Full text link
    The time evolution equations for average values of population and relative phase of a strongly coupled two component BEC is derived analytically. The two components are two hyper-fine states coupled by an external laser that drives fast Rabi oscillations between these states. Specifically, this derivation incorporates the two-mode model proposed in [1] for the strongly coupled hyper-fine states of Rb. The fast Rabi cycle is averaged out and rate equations are derived that represents the slow dynamics of the system. These include the collapse and revival of Rabi oscillations and their subsequent dependence on detuning and trap displacement as reported in experiments of [1]. A proposal to create stable vortices is also given.Comment: 11 Latex pages, 2 figures (Figure 3 was removed and the text chnaged accordingly

    Vortices in a Bose-Einstein Condensate

    Full text link
    We have created vortices in two-component Bose-Einstein condensates. The vortex state was created through a coherent process involving the spatial and temporal control of interconversion between the two components. Using an interference technique, we map the phase of the vortex state to confirm that it possesses angular momentum. We can create vortices in either of the two components and have observed differences in the dynamics and stability.Comment: 4 pages with 3 figure

    Nonlinear Josephson-type oscillations of a driven, two-component Bose-Einstein condensate

    Full text link
    We propose an experiment that would demonstrate nonlinear Josephson-type oscillations in the relative population of a driven, two-component Bose-Einstein condensate. An initial state is prepared in which two condensates exist in a magnetic trap, each in a different hyperfine state, where the initial populations and relative phase between condensates can be controlled within experimental uncertainty. A weak driving field is then applied, which couples the two internal states of the atom and consequently transfers atoms back and forth between condensates. We present a model of this system and investigate the effect of the mean field on the dynamical evolution.Comment: 4 pages, 3 fig

    Symmetric-Asymmetric transition in mixtures of Bose-Einstein condensates

    Full text link
    We propose a new kind of quantum phase transition in phase separated mixtures of Bose-Einstein condensates. In this transition, the distribution of the two components changes from a symmetric to an asymmetric shape. We discuss the nature of the phase transition, the role of interface tension and the phase diagram. The symmetric to asymmetric transition is the simplest quantum phase transition that one can imagine. Careful study of this problem should provide us new insight into this burgeoning field of discovery.Comment: 6 pages, 3 eps figure

    Optimal conditions for observing Josephson oscillations in a double-well Bose-gas condensate

    Full text link
    The Josephson oscillations between condensates in a double-well trap are known theoretically to be strongly effected by the mean field interaction in dilute atomic gases. The most important effect is that the amplitude of oscillation in the relative population of the two wells is greatly suppressed due to the mean field interaction, which can make it difficult to observe the Josephson effect. Starting from the work of Raghavan, Smerzi, Fantoni, and Shenoy, we calculate the maximum amplitude of oscillation in the relative population as a function of various physical parameters, such as the trap aspect ratio, the Gaussian barrier height and width, and the total number of atoms in the condensate. We also compare results for 23{}^{23}Na and 87{}^{87}Rb. Our main new result is that the maximum amplitude of oscillation depends strongly on the aspect ratio of the harmonic trap and can be maximized in a ``pancake'' trap, as used in the experiment of Anderson and Kasevich.Comment: 8 pages with 5 embeded figure

    Watching a superfluid untwist itself: Recurrence of Rabi oscillations in a Bose-Einstein condensate

    Full text link
    The order parameter of a condensate with two internal states can continuously distort in such a way as to remove twists that have been imposed along its length. We observe this effect experimentally in the collapse and recurrence of Rabi oscillations in a magnetically trapped, two-component Bose-Einstein condensate of ^87Rb

    Scissors mode and superfluidity of a trapped Bose-Einstein condensed gas

    Full text link
    We investigate the oscillation of a dilute atomic gas generated by a sudden rotation of the confining trap (scissors mode). This oscillation reveals the effects of superfluidity exhibited by a Bose-Einstein condensate. The scissors mode is investigated also in a classical gas above T_c in various collisional regimes. The crucial difference with respect to the superfluid case arises from the occurence of low frequency components, which are responsible for the rigid value of the moment of inertia. Different experimental procedures to excite the scissors mode are discussed.Comment: 4 pages, 3 figure

    Phase separation and vortex states in binary mixture of Bose-Einstein condensates in the trapping potentials with displaced centers

    Full text link
    The system of two simultaneously trapped codensates consisting of 87Rb^{87}Rb atoms in two different hyperfine states is investigated theoretically in the case when the minima of the trapping potentials are displaced with respect to each other. It is shown that the small shift of the minima of the trapping potentials leads to the considerable displacement of the centers of mass of the condensates, in agreement with the experiment. It is also shown that the critical angular velocities of the vortex states of the system drastically depend on the shift and the relative number of particles in the condensates, and there is a possibility to exchange the vortex states between condensates by shifting the centers of the trapping potentials.Comment: 4 pages, 2 figure
    corecore