16 research outputs found

    Differential lipid dependence of the function of bacterial sodium channels

    Get PDF
    The lipid bilayer is important for maintaining the integrity of cellular compartments and plays a vital role in providing the hydrophobic and charged interactions necessary for membrane protein structure, conformational flexibility and function. To directly assess the lipid dependence of activity for voltage-gated sodium channels, we compared the activity of three bacterial sodium channel homologues (NaChBac, NavMs, and NavSp) by cumulative 22Na+ uptake into proteoliposomes containing a 3:1 ratio of 1-palmitoyl 2-oleoyl phosphatidylethanolamine and different “guest” glycerophospholipids. We observed a unique lipid profile for each channel tested. NavMs and NavSp showed strong preference for different negatively-charged lipids (phosphatidylinositol and phosphatidylglycerol, respectively), whilst NaChBac exhibited a more modest variation with lipid type. To investigate the molecular bases of these differences we used synchrotron radiation circular dichroism spectroscopy to compare structures in liposomes of different composition, and molecular modeling and electrostatics calculations to rationalize the functional differences seen. We then examined pore-only constructs (with voltage sensor subdomains removed) and found that in these channels the lipid specificity was drastically reduced, suggesting that the specific lipid influences on voltage-gated sodium channels arise primarily from their abilities to interact with the voltage-sensing subdomains

    Synthesis and mesomorphic properties of new compounds exhibiting TGBA and TGBC liquid crystalline phases

    No full text
    We synthesised a series of rod-like mesogens with a (S)-2-methylbutyl-(S)-lactate unit in the chiral chain that exhibited extremely wide temperature ranges in the TGBA and TGBC* phases. TGB phases were identified, based on typical textures in confined samples and in free-standing films, by Grandjean-Cano texture and by NMR studies on a deuterium-labelled isotopomer. A sufficiently high electric or magnetic field transformed the TGBA and TGBC* phases into their respective SmA and SmC* phases, the TGB structures being restored within some 20-30 minutes. Therefore values of the spontaneous polarisation and spontaneous tilt angle, when measured under a sufficiently high field, gave evidence of the properties of the SmC* phase. Temperature dependencies of relaxation frequency, dielectric strength, selective reflection and layer spacing showed anomalies at a certain temperature within the TGBC* phase range. Also, changes in textures, as well as in 2H-NMR spectra, occurred at this same temperature. These results suggest the existence of two TGBC* phases

    New Liquid Crystalline Elastomeric Films Containing a Smectic Crosslinker: Chemical and Physical Properties

    No full text
    Side-chain liquid crystal elastomers (SC-LCEs) have been designed by using a new smectic crosslinker. Two types of monodomain films were prepared based on polysiloxane chains, with a different relative concentration of both crosslinker and mesogenic comonomers. The mesomorphic behavior of the two SC-LCE systems was investigated by differential scanning calorimetry and polarized optical microscopy showing a different mesomorphic behavior: in one case, we obtained a nematic SC-LCE film, in the other case, a Smectic A SC-LCE film. In both systems, the mesophases were stable in a wide temperature range. Moreover, the SC-LCE films possess a relatively high orientation at room temperature. The physical-chemical properties, such as the local orientational ordering, structural organization, and dynamics of SC-LCEs’ constituents were studied by means of static and dynamic 2H NMR experiments, small-angle X-ray, and wide-angle X-ray diffractions. The relevant physical properties, such as the thermo-elastic and thermo-mechanic behaviors, are reported and discussed in view of the practical applications
    corecore