56 research outputs found

    Four-Hundred-and-Ninety-Million-Year Record of Bacteriogenic Iron Oxide Precipitation at Sea-Floor Hydrothermal Vents

    Get PDF
    Fe oxide deposits are commonly found at hydrothermal vent sites at mid-ocean ridge and back-arc sea floor spreading centers, seamounts associated with these spreading centers, and intra-plate seamounts, and can cover extensive areas of the seafloor. These deposits can be attributed to several abiogenic processes and commonly contain micron-scale filamentous textures. Some filaments are cylindrical casts of Fe oxyhydroxides formed around bacterial cells and are thus unquestionably biogenic. The filaments have distinctive morphologies very like structures formed by neutrophilic Fe oxidizing bacteria. It is becoming increasingly apparent that Fe oxidizing bacteria have a significant role in the formation of Fe oxide deposits at marine hydrothermal vents. The presence of Fe oxide filaments in Fe oxides is thus of great potential as a biomarker for Fe oxidizing bacteria in modern and ancient marine hydrothermal vent deposits. The ancient analogues of modern deep-sea hydrothermal Fe oxide deposits are jaspers. A number of jaspers, ranging in age from the early Ordovician to late Eocene, contain abundant Fe oxide filamentous textures with a wide variety of morphologies. Some of these filaments are like structures formed by modern Fe oxidizing bacteria. Together with new data from the modern TAG site, we show that there is direct evidence for bacteriogenic Fe oxide precipitation at marine hydrothermal vent sites for at least the last 490 Ma of the Phanerozoic

    Challenges and Prospects in Ocean Circulation Models

    Get PDF
    We revisit the challenges and prospects for ocean circulation models following Griffies et al. (2010). Over the past decade, ocean circulation models evolved through improved understanding, numerics, spatial discretization, grid configurations, parameterizations, data assimilation, environmental monitoring, and process-level observations and modeling. Important large scale applications over the last decade are simulations of the Southern Ocean, the Meridional Overturning Circulation and its variability, and regional sea level change. Submesoscale variability is now routinely resolved in process models and permitted in a few global models, and submesoscale effects are parameterized in most global models. The scales where nonhydrostatic effects become important are beginning to be resolved in regional and process models. Coupling to sea ice, ice shelves, and high-resolution atmospheric models has stimulated new ideas and driven improvements in numerics. Observations have provided insight into turbulence and mixing around the globe and its consequences are assessed through perturbed physics models. Relatedly, parameterizations of the mixing and overturning processes in boundary layers and the ocean interior have improved. New diagnostics being used for evaluating models alongside present and novel observations are briefly referenced. The overall goal is summarizing new developments in ocean modeling, including: how new and existing observations can be used, what modeling challenges remain, and how simulations can be used to support observations.Peer reviewe

    Challenges and Prospects in Ocean Circulation Models

    Get PDF
    We revisit the challenges and prospects for ocean circulation models following Griffies et al. (2010). Over the past decade, ocean circulation models evolved through improved understanding, numerics, spatial discretization, grid configurations, parameterizations, data assimilation, environmental monitoring, and process-level observations and modeling. Important large scale applications over the last decade are simulations of the Southern Ocean, the Meridional Overturning Circulation and its variability, and regional sea level change. Submesoscale variability is now routinely resolved in process models and permitted in a few global models, and submesoscale effects are parameterized in most global models. The scales where nonhydrostatic effects become important are beginning to be resolved in regional and process models. Coupling to sea ice, ice shelves, and high-resolution atmospheric models has stimulated new ideas and driven improvements in numerics. Observations have provided insight into turbulence and mixing around the globe and its consequences are assessed through perturbed physics models. Relatedly, parameterizations of the mixing and overturning processes in boundary layers and the ocean interior have improved. New diagnostics being used for evaluating models alongside present and novel observations are briefly referenced. The overall goal is summarizing new developments in ocean modeling, including: how new and existing observations can be used, what modeling challenges remain, and how simulations can be used to support observations

    Comparison of unstructured, staggered grid methods for the shallow water equations

    No full text
    Unstructured grid models are receiving increased attention mainly because of their ability to provide a flexible spatial discretization. Hence, some areas can be resolved in great detail while not over-resolving other areas. Development of these models is an ongoing process with significant longstanding issues with spurious computational modes, efficiency, advection and Coriolis approximations, and so forth. However, many of these problems have been solved with the current generation of models which have much promise for coastal to global scale ocean modelling. Our purpose is to intercompare a class of unstructured grid models where the continuity equation reduces to a finite volume approximation. The momentum equations can be approximated with finite difference, finite element, or finite volume methods. Each of these methods can have advantages and disadvantages in different classes of problems that range from hydraulics to coastal and global ocean flows. Some of the more important differences are restrictions on grid irregularity and stability of the Coriolis term. The finite element version of the model has important advantages in the discretization of the Coriolis term and does not require a reconstruction of a tangential velocity component. The comparison is illustrated with a simple test case. (C) 2008 Elsevier Ltd. All rights reserved
    corecore