3,622 research outputs found
Four-photon interference: a realizable experiment to demonstrate violation of EPR postulates for perfect correlations
Bell's theorem reveals contradictions between the predictions of quantum
mechanics and the EPR postulates for a pair of particles only in situations
involving imperfect statistical correlations. However, with three or more
particles, contradictions emerge even for perfect correlations. We describe an
experiment which can be realized in the laboratory, using four-photon entangled
states generated by parametric down-conversion, to demonstrate this
contradiction at the level of perfect correlations.Comment: publishe
Spontaneous extrusion of gallstones after percutaneous drainage
There have been reports of late discharge of gallstones through operative wounds after spillage into the peritoneal cavity during laparoscopic cholecystectomy and after the development of spontaneous cholecystocutaneous fistulae. However, spontaneous discharge of gallstones from the tract of a percutaneous cholecystostomy or percutaneous drainage of a perforated gall bladder has not, to the best of our knowledge, been reported previously. We report a case in which a patient who had a percutaneous drain inserted for a perforated gall bladder discharged 34 gallstones from the tract after removal of the 7-F pigtail catheter
Quantum correlations from local amplitudes and the resolution of the Einstein-Podolsky-Rosen nonlocality puzzle
The Einstein-Podolsky-Rosen nonlocality puzzle has been recognized as one of
the most important unresolved issues in the foundational aspects of quantum
mechanics. We show that the problem is resolved if the quantum correlations are
calculated directly from local quantities which preserve the phase information
in the quantum system. We assume strict locality for the probability amplitudes
instead of local realism for the outcomes, and calculate an amplitude
correlation function.Then the experimentally observed correlation of outcomes
is calculated from the square of the amplitude correlation function. Locality
of amplitudes implies that the measurement on one particle does not collapse
the companion particle to a definite state. Apart from resolving the EPR
puzzle, this approach shows that the physical interpretation of apparently
`nonlocal' effects like quantum teleportation and entanglement swapping are
different from what is usually assumed. Bell type measurements do not change
distant states. Yet the correlations are correctly reproduced, when measured,
if complex probability amplitudes are treated as the basic local quantities. As
examples we discuss the quantum correlations of two-particle maximally
entangled states and the three-particle GHZ entangled state.Comment: Std. Latex, 11 pages, 1 table. Prepared for presentation at the
International Conference on Quantum Optics, ICQO'2000, Minsk, Belaru
Efficient Classical Simulation of Optical Quantum Circuits
We identify a broad class of physical processes in an optical quantum circuit
that can be efficiently simulated on a classical computer: this class includes
unitary transformations, amplification, noise, and measurements. This
simulatability result places powerful constraints on the capability to realize
exponential quantum speedups as well as on inducing an optical nonlinear
transformation via linear optics, photodetection-based measurement and
classical feedforward of measurement results, optimal cloning, and a wide range
of other processes.Comment: 4 pages, published versio
Reversed propagation dynamics of Laguerre-Gaussian beams in left-handed materials
On the basis of angular spectrum representation, the reversed propagation
dynamics of Laguerre-Gaussian beam in left-handed materials (LHMs) is
presented. We show that negative phase velocity gives rise to a reversed screw
of wave-front, and ultimately leads to a reversed rotation of optical vortex.
Furthermore, negative Gouy-phase shift causes an inverse spiral of Poynting
vector. It is found that the Laguerre-Gaussian beam in LHMs will present the
same propagation characteristics as the counterpart with opposite topological
charges in regular right-handed materials (RHMs). The momentum conservation
theorem insures that the tangential component of the wave momentum at the
RHM-LHM boundary is conserved. It is shown that although the linear momentum
reverses its direction, the angular momentum remains unchanged.Comment: 7 pages, 4 figure
Penetration depth of low-coherence enhanced backscattered light in sub-diffusion regime
The mechanisms of photon propagation in random media in the diffusive
multiple scattering regime have been previously studied using diffusion
approximation. However, similar understanding in the low-order (sub-diffusion)
scattering regime is not complete due to difficulties in tracking photons that
undergo very few scatterings events. Recent developments in low-coherence
enhanced backscattering (LEBS) overcome these difficulties and enable probing
photons that travel very short distances and undergo only a few scattering
events. In LEBS, enhanced backscattering is observed under illumination with
spatial coherence length L_sc less than the scattering mean free path l_s. In
order to understand the mechanisms of photon propagation in LEBS in the
subdiffusion regime, it is imperative to develop analytical and numerical
models that describe the statistical properties of photon trajectories. Here we
derive the probability distribution of penetration depth of LEBS photons and
report Monte Carlo numerical simulations to support our analytical results. Our
results demonstrate that, surprisingly, the transport of photons that undergo
low-order scattering events has only weak dependence on the optical properties
of the medium (l_s and anisotropy factor g) and strong dependence on the
spatial coherence length of illumination, L_sc, relative to those in the
diffusion regime. More importantly, these low order scattering photons
typically penetrate less than l_s into the medium due to low spatial coherence
length of illumination and their penetration depth is proportional to the
one-third power of the coherence volume (i.e. [l_s \pi L_sc^2 ]^1/3).Comment: 32 pages(including 7 figures), modified version to appear in Phys.
Rev.
Information-theoretic significance of the Wigner distribution
A coarse grained Wigner distribution p_{W}(x,u) obeying positivity derives
out of information-theoretic considerations. Let p(x,u) be the unknown joint
PDF (probability density function) on position- and momentum fluctuations x,u
for a pure state particle. Suppose that the phase part Psi(x,z) of its Fourier
transform F.T.[p(x,u)]=|Z(x,z)|exp[iPsi(x,z)] is constructed as a hologram.
(Such a hologram is often used in heterodyne interferometry.) Consider a
particle randomly illuminating this phase hologram. Let its two position
coordinates be measured. Require that the measurements contain an extreme
amount of Fisher information about true position, through variation of the
phase function Psi(x,z). The extremum solution gives an output PDF p(x,u) that
is the convolution of the Wigner p_{W}(x,u) with an instrument function
defining uncertainty in either position x or momentum u. The convolution arises
naturally out of the approach, and is one-dimensional, in comparison with the
two-dimensional convolutions usually proposed for coarse graining purposes. The
output obeys positivity, as required of a PDF, if the one-dimensional
instrument function is sufficiently wide. The result holds for a large class of
systems: those whose amplitudes a(x) are the same at their boundaries
(Examples: states a(x) with positive parity; with periodic boundary conditions;
free particle trapped in a box).Comment: pdf version has 16 pages. No figures. Accepted for publ. in PR
Colloidal electrophoresis: Scaling analysis, Green-Kubo relation, and numerical results
We consider electrophoresis of a single charged colloidal particle in a
finite box with periodic boundary conditions, where added counterions and salt
ions ensure charge neutrality. A systematic rescaling of the electrokinetic
equations allows us to identify a minimum set of suitable dimensionless
parameters, which, within this theoretical framework, determine the reduced
electrophoretic mobility. It turns out that the salt-free case can, on the Mean
Field level, be described in terms of just three parameters. A fourth
parameter, which had previously been identified on the basis of straightforward
dimensional analysis, can only be important beyond Mean Field. More complicated
behavior is expected to arise when further ionic species are added. However,
for a certain parameter regime, we can demonstrate that the salt-free case can
be mapped onto a corresponding system containing additional salt. The
Green-Kubo formula for the electrophoretic mobility is derived, and its
usefulness demonstrated by simulation data. Finally, we report on
finite-element solutions of the electrokinetic equations, using the commercial
software package COMSOL.Comment: To appear in Journal of Physics: Condensed Matter - special issue on
occasion of the CODEF 2008 conferenc
Excited States of Ladder-type Poly-p-phenylene Oligomers
Ground state properties and excited states of ladder-type paraphenylene
oligomers are calculated applying semiempirical methods for up to eleven
phenylene rings. The results are in qualitative agreement with experimental
data. A new scheme to interpret the excited states is developed which reveals
the excitonic nature of the excited states. The electron-hole pair of the
S1-state has a mean distance of approximately 4 Angstroem.Comment: 24 pages, 21 figure
Domain-adaptive discriminative one-shot learning of gestures
The objective of this paper is to recognize gestures in videos - both localizing the gesture and classifying it into one of multiple classes. We show that the performance of a gesture classifier learnt from a single (strongly supervised) training example can be boosted significantly using a 'reservoir' of weakly supervised gesture examples (and that the performance exceeds learning from the one-shot example or reservoir alone). The one-shot example and weakly supervised reservoir are from different 'domains' (different people, different videos, continuous or non-continuous gesturing, etc), and we propose a domain adaptation method for human pose and hand shape that enables gesture learning methods to generalise between them. We also show the benefits of using the recently introduced Global Alignment Kernel [12], instead of the standard Dynamic Time Warping that is generally used for time alignment. The domain adaptation and learning methods are evaluated on two large scale challenging gesture datasets: one for sign language, and the other for Italian hand gestures. In both cases performance exceeds the previous published results, including the best skeleton-classification-only entry in the 2013 ChaLearn challenge
- …
