6,560 research outputs found

    How Can We Obtain a Large Majorana-Mass in Calabi-Yau Models ?

    Get PDF
    In a certain type of Calabi-Yau superstring models it is clarified that the symmetry breaking occurs by stages at two large intermediate energy scales and that two large intermediate scales induce large Majorana-masses of right-handed neutrinos. Peculiar structure of the effective nonrenormalizable interactions is crucial in the models. In this scheme Majorana-masses possibly amount to O(10^{9 \sim 10}\gev) and see-saw mechanism is at work for neutrinos. Based on this scheme we propose a viable model which explains the smallness of masses for three kind of neutrinos νe,νμ and ντ\nu _e, \nu _{\mu} \ {\rm and}\ \nu _{\tau}. Special forms of the nonrenormalizable interactions can be understood as a consequence of an appropriate discrete symmetry of the compactified manifold.Comment: 30-pages + 6-figures, LaTeX, Preprint DPNU-94-02, AUE-01-9

    Transition density of diffusion on Sierpinski gasket and extension of Flory's formula

    Full text link
    Some problems related to the transition density u(t,x) of the diffusion on the Sierpinski gasket are considerd, based on recent rigorous results and detailed numerical calculations. The main contents are an extension of Flory's formula for the end-to-end distance exponent of self-avoiding walks on the fractal spaces, and an evidence of the oscillatory behavior of u(t,x) on the Sierpinski gasket.Comment: 11 pages, REVTEX, 2 postscript figure

    Complete Genome Sequences of Arcobacter butzleri ED-1 and Arcobacter sp Strain L, Both Isolated from a Microbial Fuel Cell

    Get PDF
    Arcobacter butzleri strain ED-1 is an exoelectrogenic epsilonproteobacterium isolated from the anode biofilm of a microbial fuel cell. Arcobacter sp. strain L dominates the liquid phase of the same fuel cell. Here we report the finished and annotated genome sequences of these organisms

    Manifestations of fine features of the density of states in the transport properties of KOs2O6

    Full text link
    We performed high-pressure transport measurements on high-quality single crystals of KOs2O6, a beta-pyrochlore superconductor. While the resistivity at high temperatures might approach saturation, there is no sign of saturation at low temperatures, down to the superconducting phase. The anomalous resistivity is accompanied by a nonmetallic behavior in the thermoelectric power (TEP) up to temperatures of at least 700 K, which also exhibits a broad hump with a maximum at 60 K. The pressure influences mostly the low-energy electronic excitations. A simple band model based on enhanced density of states in a narrow window around the Fermi energy (EF) explains the main features of this unconventional behavior in the transport coefficients and its evolution under pressure

    Kondo Effect of a Magnetic Ion Vibrating in a Harmonic Potential

    Full text link
    To discuss Kondo effects of a magnetic ion vibrating in the sea of conduction electrons, a generalized Anderson model is derived. The model includes a new channel of hybridization associated with phonon emission or absorption. In the simplest case of the localized electron orbital with the s-wave symmetry, hybridization with p-waves becomes possible. Interesting interplay among the conventional s-wave Kondo effect and the p-wave one and the Yu-Anderson type Kondo effect is found and the ground state phase diagram is determined by using the numerical renormalization group method. Two different types of stable fixed points are identified and the two-channel Kondo fixed points are generically realized on the boundary.Comment: 15 pages, 17 figures, J. Phys. Soc. Jpn. 80 (2011) No.6 to be publishe

    Newly developed EMF cell with zirconia solid electrolyte for measurement of low oxygen potentials in liquid Cu-Cr and Cu-Zr alloys

    Get PDF
    In order to measure the very low oxygen potential by use of stabilized zirconia solid electrolyte emf method, a new cell construction was devised. The idea was based on Janke but a zirconia rod was used instead of the zirconia crucible which contacts liquid alloy electrode. The cell was used for determination of the oxygen potentials in liquid dilute Cu-Cr and Cu-Zr alloys. The reference electrode was Cr,Cr2O3. Emf measurements were performed in the temperature range of 1400-1580K and composition range of 0.198-3.10at%Cr-Cu alloys, and 1380-1465K, 0.085-0.761at%Zr-Cu alloys. The composition of liquid alloys were determined by picking up from the liquid alloys and ICP analysis. By use of the newly devised cell construction in this study, stable emf values were obtained at each temperature and alloy composition. Emf values were corrected by using the parameter for electronic contribution of the YSZ. Activity of Cr obeys Henry’s law and activity coefficient at infinitely dilute alloys of Cr in Cu-Cr alloys are: lng0 Cr =(3.80 at 1423K), (3.57 at 1473K), (3.38 at 1523K) and (3.20 at 1573K). At 1423 K activity coefficient of Zr at infinitely diluted alloy is lnγo Zr = -4.0

    Topology, Hidden Spectra and Bose Einstein Condensation on low dimensional complex networks

    Full text link
    Topological inhomogeneity gives rise to spectral anomalies that can induce Bose-Einstein Condensation (BEC) in low dimensional systems. These anomalies consist in energy regions composed of an infinite number of states with vanishing weight in the thermodynamic limit (hidden states). Here we present a rigorous result giving the most general conditions for BEC on complex networks. We prove that the presence of hidden states in the lowest region of the spectrum is the necessary and sufficient condition for condensation in low dimension (spectral dimension dˉ2\bar{d}\leq 2), while it is shown that BEC always occurs for dˉ>2\bar{d}>2.Comment: 4 pages, 10 figure
    corecore