3,227 research outputs found

    Exotic mitotic mechanisms

    Get PDF
    The emergence of eukaryotes around two billion years ago provided new challenges for the chromosome segregation machineries: the physical separation of multiple large and linear chromosomes from the microtubule-organizing centres by the nuclear envelope. In this review, we set out the diverse solutions that eukaryotic cells use to solve this problem, and show how stepping away from ‘mainstream’ mitosis can teach us much about the mechanisms and mechanics that can drive chromosome segregation. We discuss the evidence for a close functional and physical relationship between membranes, nuclear pores and kinetochores in generating the forces necessary for chromosome segregation during mitosis

    Background subtraction and transient timing with Bayesian Blocks

    Full text link
    Aims: To incorporate background subtraction into the Bayesian Blocks algorithm so that transient events can be timed accurately and precisely even in the presence of a substantial, rapidly variable, background. Methods: We developed several modifications to the algorithm and tested them on a simulated XMM-Newton observation of a bursting and eclipsing object. Results: We found that bursts can be found to good precision for almost all background subtraction methods, but eclipse ingresses and egresses present problems for most methods. We found one method that recovered these events with precision comparable to the interval between individual photons, in which both source and background region photons are combined into a single list and weighted according to the exposure area. We have also found that adjusting the Bayesian Blocks change points nearer to blocks with higher count rate removes a systematic bias towards blocks of low count rate.Comment: 10 pages, 13 figures, 1 tabl

    Liquid compressibility effects during the collapse of a single cavitating bubble

    Get PDF
    The effect of liquid compressibility on the dynamics of a single, spherical cavitating bubble is studied. While it is known that compressibility damps the amplitude of bubble rebounds, the extent to which this effect is accurately captured by weakly compressible versions of the Rayleigh–Plesset equation is unclear. To clarify this issue, partial differential equations governing conservation of mass, momentum, and energy are numerically solved both inside the bubble and in the surrounding compressible liquid. Radiated pressure waves originating at the unsteady bubble interface are directly captured. Results obtained with Rayleigh–Plesset type equations accounting for compressibility effects, proposed by Keller and Miksis [J. Acoust. Soc. Am. 68, 628–633 (1980)], Gilmore, and Tomita and Shima [Bull. JSME 20, 1453–1460 (1977)], are compared with those resulting from the full model. For strong collapses, the solution of the latter reveals that an important part of the energy concentrated during the collapse is used to generate an outgoing pressure wave. For the examples considered in this research, peak pressures are larger than those predicted by Rayleigh–Plesset type equations, whereas the amplitudes of the rebounds are smaller

    The Clustering Of Galaxies Around Radio-Loud AGNs

    Full text link
    We examine the hypothesis that mergers and close encounters between galaxies can fuel AGNs by increasing the rate at which gas accretes towards the central black hole. We compare the clustering of galaxies around radio-loud AGNs with the clustering around a population of radio-quiet galaxies with similar masses, colors and luminosities. Our catalog contains 2178 elliptical radio galaxies with flux densities greater than 2.8 mJy at 1.4 GHz from the 6dFGS survey. We find that radio AGNs with more than 200 times the median radio power have, on average, more close (r<160 kpc) companions than their radio-quiet counterparts, suggestive that mergers play a role in forming the most powerful radio galaxies. For ellipticals of fixed stellar mass, the radio power is not a function of large-scale environment nor halo mass, consistent with the radio powers of ellipticals varying by orders of magnitude over billions of years.Comment: 12 pages, 6 figure

    Revealing quantum statistics with a pair of distant atoms

    Full text link
    Quantum statistics have a profound impact on the properties of systems composed of identical particles. In this Letter, we demonstrate that the quantum statistics of a pair of identical massive particles can be probed by a direct measurement of the exchange symmetry of their wave function even in conditions where the particles always remain spatially well separated and thus the exchange contribution to their interaction energy is negligible. We present two protocols revealing the bosonic or fermionic nature of a pair of particles and discuss possible implementations with a pair of trapped atoms or ions.Comment: 4+13 pages, v2 corresponds to the version published by PR

    Enhanced photoluminescence emission from two-dimensional silicon photonic crystal nanocavities

    Get PDF
    We present a temperature dependent photoluminescence study of silicon optical nanocavities formed by introducing point defects into two-dimensional photonic crystals. In addition to the prominent TO phonon assisted transition from crystalline silicon at ~1.10 eV we observe a broad defect band luminescence from ~1.05-1.09 eV. Spatially resolved spectroscopy demonstrates that this defect band is present only in the region where air-holes have been etched during the fabrication process. Detectable emission from the cavity mode persists up to room-temperature, in strong contrast the background emission vanishes for T > 150 K. An Ahrrenius type analysis of the temperature dependence of the luminescence signal recorded either in-resonance with the cavity mode, or weakly detuned, suggests that the higher temperature stability may arise from an enhanced internal quantum efficiency due to the Purcell-effect

    Developmental differences in the control of action selection by social information

    Get PDF
    Our everyday actions are often performed in the context of a social interaction. We previously showed that, in adults, selecting an action on the basis of either social or symbolic cues was associated with activations in the fronto-parietal cognitive control network, whereas the presence and use of social versus symbolic cues was in addition associated with activations in the temporal and medial prefrontal cortex (MPFC) social brain network. Here we investigated developmental changes in these two networks. Fourteen adults (21–30 years of age) and 14 adolescents (11–16 years) followed instructions to move objects in a set of shelves. Interpretation of the instructions was conditional on the point of view of a visible “director” or the meaning of a symbolic cue (Director Present vs. Director Absent) and the number of potential referent objects in the shelves (3-object vs. 1-object). 3-object trials elicited increased fronto-parietal and temporal activations, with greater left lateral prefrontal cortex and parietal activations in adults than adolescents. Social versus symbolic information led to activations in superior dorsal MPFC, precuneus, and along the superior/middle temporal sulci. Both dorsal MPFC and left temporal clusters exhibited a Director × Object interaction, with greater activation when participants needed to consider the directors' viewpoints. This effect differed with age in dorsal MPFC. Adolescents showed greater activation whenever social information was present, whereas adults showed greater activation only when the directors' viewpoints were relevant to task performance. This study thus shows developmental differences in domain-general and domain-specific PFC activations associated with action selection in a social interaction context

    Stratosphere troposphere coupling: the influence of volcanic eruptions

    Get PDF
    Stratospheric sulfate aerosols produced by major volcanic eruptions modify the radiative and dynamical properties of the troposphere and stratosphere through their reflection of solar radiation and absorption of infrared radiation. At the Earth's surface, the primary consequence of a large eruption is cooling, however, it has long been known that major tropical eruptions tend to be followed by warmer than usual winters over the Northern Hemisphere (NH) continents. This volcanic "winter-warming" effect in the NH is understood to be the result of changes in atmospheric circulation patterns resulting from heating in the stratosphere, and is often described as positive anomalies of the Northern Annular Mode (NAM) that propagate downward from the stratosphere to the troposphere. In the southern hemisphere, climate models tend to also predict a positive Southern Annular Mode (SAM) response to volcanic eruptions, but this is generally inconsistent with post-eruption observations during the 20th century. We review present understanding of the influence of volcanic eruptions on the large scale modes of atmospheric variability in both the Northern and Southern Hemispheres. Using models of varying complexity, including an aerosol-climate model, an Earth system model, and CMIP5 simulations, we assess the ability of climate models to reproduce the observed post-eruption climatic and dynamical anomalies. We will also address the parametrization of volcanic eruptions in simulations of the past climate, and identify possibilities for improvemen

    A Correlation between the Emission Intensity of Self-Assembled Germanium Islands and the Quality Factor of Silicon Photonic Crystal Nanocavities

    Get PDF
    We present a comparative micro-photoluminescence study of the emission intensity of self-assembled germanium islands coupled to the resonator mode of two-dimensional silicon photonic crystal defect nanocavities. The emission intensity is investigated for cavity modes of L3 and Hexapole cavities with different cavity quality factors. For each of these cavities many nominally identical samples are probed to obtain reliable statistics. As the quality factor increases we observe a clear decrease in the average mode emission intensity recorded under comparable optical pumping conditions. This clear experimentally observed trend is compared with simulations based on a dissipative master equation approach that describes a cavity weakly coupled to an ensemble of emitters. We obtain evidence that reabsorption of photons emitted into the cavity mode is responsible for the observed trend. In combination with the observation of cavity linewidth broadening in power dependent measurements, we conclude that free carrier absorption is the limiting effect for the cavity mediated light enhancement under conditions of strong pumping.Comment: 8 pages, 5 figure
    corecore