23,967 research outputs found
Precision control system for engine fuel
System controls two or more pneumatically operated metering valves from common pneumatic source without interaction between valve controls. Unit affords independent metering of liquid from single source to two concurrent applications. Calibration and testing demonstrate complete absence of interaction between valves and corresponding flow rates
SHORT-RUN INDICATORS OF FINANCIAL SUCCESS FOR SOUTHWEST MINNESOTA FARMERS
Agricultural Finance,
The Regulatory Roles of the Galactose Permease and Kinase in the Induction Response of the GAL Network in Saccharomyces cerevisiae
The GAL genetic switch of Saccharomyces cerevisiae exhibits an ultrasensitive response to the inducer galactose as well as the "all-or-none" behavior characteristic of many eukaryotic regulatory networks. We have constructed a strain that allows intermediate levels of gene expression from a tunable GAL1 promoter at both the population and the single cell level by altering the regulation of the galactose permease Gal2p. Similar modifications to other feedback loops regulating the Gal80p repressor and the Gal3p signaling protein did not result in similarly tuned responses, indicating that the level of inducer transport is unique in its ability to control the switch response of the network. In addition, removal of the Gal1p galactokinase from the network resulted in a regimed response due to the dual role of this enzyme in galactose catabolism and transport. These two activities have competing effects on the response of the network to galactose such that the transport effects of Gal1p are dominant at low galactose concentrations, whereas its catabolic effects are dominant at high galactose concentrations. In addition, flow cytometry analysis revealed the unexpected phenomenon of multiple populations in the gal1{Delta} strains, which were not present in the isogenic GAL1 background. This result indicates that Gal1p may play a previously undescribed role in the stability of the GAL network response
Evaluation of life cycle carbon impacts for higher education building redevelopment: a multiple case study approach
UK higher education institutions have strong drivers to reduce operational carbon emissions through building redevelopment. The life cycle carbon impact of buildings − operational and embodied carbon − is a developing area of consideration, particularly in redevelopment. A case study analysis was employed to assess how redevelopment interventions can reduce life cycle carbon impacts.
The five case study buildings covered a variety of activities, construction styles, systems and operational characteristics. Each building was monitored over a 12-month period and the data was combined with metered energy use to calibrate life cycle carbon base models following the BS EN 15978:2011 standard. The base models were modified to simulate a range of carbon reduction interventions and also new-build to current UK energy efficiency regulations. The design stage uncertainty was factored in.
The best-case refurbishment options showed average life cycle carbon savings of between 20 and 29%, with the most effective intervention varying by building. For new-build, the savings ranged from 32–64%, with the greatest being for conversion from mechanical to natural ventilation. The average contribution of embodied carbon to total life cycle carbon impact for the new-builds varied from 6% for the chemistry building to 23% for the law building
Evaluation of life cycle carbon impacts for higher education building redevelopment: an archetype approach
An archetype-based approach was taken to generalise case study findings on the life cycle carbon impacts of higher education building redevelopment. For each archetype, the life cycle operational and embodied carbon impacts of carbon reduction interventions and building redevelopment options were analysed. The contribution of embodied carbon to total life cycle carbon impact was also evaluated.
A database of English and Welsh university buildings was constructed comprising energy and geometry data. Six archetypes for pre-1985 buildings were then determined based on academic activity and servicing strategy. Buildings were synthesised for each archetype using case study data and the database geometry data. Life cycle carbon models following the BS EN 15978:2011 standard were constructed, calibrated using the database energy data and used to simulate carbon reduction interventions and new-build schemes. Various material systems were considered and design stage uncertainty was factored in.
For new-build, average life cycle carbon savings ranged from 37 to 54%, exceeding the range of 25–33% for the best-case refurbishment options. However, in some cases the differences were only slight and within the range of uncertainty. Structural systems and building services dominated material impacts, the latter owing to replacement cycles. The generalised findings were used to provide guidance on higher education carbon management
Adaptive Thresholding for Sparse Covariance Matrix Estimation
In this paper we consider estimation of sparse covariance matrices and
propose a thresholding procedure which is adaptive to the variability of
individual entries. The estimators are fully data driven and enjoy excellent
performance both theoretically and numerically. It is shown that the estimators
adaptively achieve the optimal rate of convergence over a large class of sparse
covariance matrices under the spectral norm. In contrast, the commonly used
universal thresholding estimators are shown to be sub-optimal over the same
parameter spaces. Support recovery is also discussed. The adaptive thresholding
estimators are easy to implement. Numerical performance of the estimators is
studied using both simulated and real data. Simulation results show that the
adaptive thresholding estimators uniformly outperform the universal
thresholding estimators. The method is also illustrated in an analysis on a
dataset from a small round blue-cell tumors microarray experiment. A supplement
to this paper which contains additional technical proofs is available online.Comment: To appear in Journal of the American Statistical Associatio
Cost analysis of new and retrofit hot-air type solar assisted heating systems
A detailed cost analysis/cost improvement study was performed on two Department of Energy/National Aeronautics and Space Administration operational test sites to determine actual costs and potential cost improvements of new and retrofit hot air type, solar assisted heating and hot water systems for single family sized structures. This analysis concentrated on the first cost of a system which included procurement, installation, and integration of a solar assisted heating and hot water system on a new or retrofit basis; it also provided several cost projections which can be used as inputs to payback analyses, depending upon the degree of optimism or future improvements assumed. Cost definitions were developed for five categories of cost, and preliminary estimates were developed for each. The costing methodology, approach, and results together with several candidate low cost designs are described
Diurnal ocean surface layer model validation
The diurnal ocean surface layer (DOSL) model at the Fleet Numerical Oceanography Center forecasts the 24-hour change in a global sea surface temperatures (SST). Validating the DOSL model is a difficult task due to the huge areas involved and the lack of in situ measurements. Therefore, this report details the use of satellite infrared multichannel SST imagery to provide day and night SSTs that can be directly compared to DOSL products. This water-vapor-corrected imagery has the advantages of high thermal sensitivity (0.12 C), large synoptic coverage (nearly 3000 km across), and high spatial resolution that enables diurnal heating events to be readily located and mapped. Several case studies in the subtropical North Atlantic readily show that DOSL results during extreme heating periods agree very well with satellite-imagery-derived values in terms of the pattern of diurnal warming. The low wind and cloud-free conditions necessary for these events to occur lend themselves well to observation via infrared imagery. Thus, the normally cloud-limited aspects of satellite imagery do not come into play for these particular environmental conditions. The fact that the DOSL model does well in extreme events is beneficial from the standpoint that these cases can be associated with the destruction of the surface acoustic duct. This so-called afternoon effect happens as the afternoon warming of the mixed layer disrupts the sound channel and the propagation of acoustic energy
- …
