8,925 research outputs found
Radio frequency baseband recording technique
Technique uses a helical-scan video recorder with auxiliary signal-conditioning equipment to provide an inexpensive, high-capacity magnetic tape recording of a 112 channel, phase-locked, multiplexed, baseband signal
Spectral Energy Distributions of starburst galaxies in the 900-1200 A range
We present the 970-1175 A spectral energy distributions (SEDs) of 12
starburst galaxies observed with the Far Ultraviolet Spectroscopic Explorer
FUSE. We take benefit of the high spectral resolution of FUSE to estimate a
continuum as much as possible unaffected by the interstellar lines. The
continuum is rather flat with, in few cases, a decrease at lambda <~1050 A, the
amplitude of which being correlated with various indicators of the dust
extinction. The far-UV SEDs are compared with synthetic population models. The
galaxies with almost no extinction have a SED consistent with an on-going star
formation over some Myrs. We derive a mean dust attenuation law in the
wavelength range 965-1140 A by comparing the SED of obscured galaxies to an
empirical dust-free SED. The extinction is nearly constant longward of 1040 A
but rises at shorter wavelengths. We compare our results with other studies of
the extinction for galaxies and stars in this wavelength range.Comment: 11 pages, 6 postscript figures, accepted for publication in Astronomy
& Astrophysic
Local Starbursts in a Cosmological Context
In this contribution I introduce some of the major issues that motivate the
conference, with an emphasis on how starbursts fit into the ``big picture''. I
begin by defining starbursts in several different ways, and discuss the merits
and limitations of these definitions. I will argue that the most physically
useful definition of a starburst is its ``intensity'' (star formation rate per
unit area). This is the most natural parameter to compare local starbursts with
physically similar galaxies at high redshift, and indeed I will argue that
local starbursts are unique laboratories to study the processes at work in the
early universe. I will describe how NASA's GALEX mission has uncovered a rare
population of close analogs to Lyman Break Galaxies in the local universe. I
will then compare local starbursts to the Lyman-Break and sub-mm galaxies high
redshift populations, and speculate that the multidimensional ``manifold'' of
starbursts near and far can be understood largely in terms of the
Schmidt/Kennicutt law and galaxy mass-metallicity relation. I will briefly
summarize he properties of starburst-driven galactic superwinds and their
possible implications for the evolution of galaxies and the IGM. These complex
multiphase flows are best studied in nearby starbursts, where we can study the
the hot X-ray gas that contains the bulk of the energy and newly produced
metals.Comment: Proceedings of the Conference "Starbursts: Fropm 30 Doradus to Lyman
Break Galaxies
The Panchromatic Starburst Intensity Limit At Low And High Redshift
The integrated bolometric effective surface brightness S_e distributions of
starbursts are investigated for samples observed in 1. the rest frame
ultraviolet (UV), 2. the far-infrared and H-alpha, and 3. 21cm radio continuum
emission. For the UV sample we exploit a tight empirical relationship between
UV reddening and extinction to recover the bolometric flux. Parameterizing the
S_e upper limit by the 90th percentile of the distribution, we find a mean
S_{e,90} = 2.0e11 L_{sun}/kpc^2 for the three samples, with a factor of three
difference between the samples. This is consistent with what is expected from
the calibration uncertainties alone. We find little variation in S_{e,90} with
effective radii for R_e ~ 0.1 - 10 kpc, and little evolution out to redshifts z
~ 3. The lack of a strong dependence of S_{e,90} on wavelength, and its
consistency with the pressure measured in strong galactic winds, argue that it
corresponds to a global star formation intensity limit (\dot\Sigma_{e,90} ~ 45
M_{sun}/kpc^2/yr) rather than being an opacity effect. There are several
important implications of these results: 1. There is a robust physical
mechanism limiting starburst intensity. We note that starbursts have S_e
consistent with the expectations of gravitational instability models applied to
the solid body rotation portion of galaxies. 2. Elliptical galaxies and spiral
bulges can plausibly be built with maximum intensity bursts, while normal
spiral disks can not. 3. The UV extinction of high-z galaxies is significant,
implying that star formation in the early universe is moderately obscured.
After correcting for extinction, the observed metal production rate at z ~ 3
agrees well with independent estimates made for the epoch of elliptical galaxy
formation.Comment: 31 pages Latex (aas2pp4.sty,psfig.sty), 9 figures, accepted for
publication in the Astronomical Journa
Exploring the Connection Between Star Formation and AGN Activity in the Local Universe
We study a combined sample of 264 star-forming, 51 composite, and 73 active
galaxies using optical spectra from SDSS and mid-infrared (mid-IR) spectra from
the Spitzer Infrared Spectrograph. We examine optical and mid-IR spectroscopic
diagnostics that probe the amount of star formation and relative energetic
contributions from star formation and an active galactic nucleus (AGN). Overall
we find good agreement between optical and mid-IR diagnostics.
Misclassifications of galaxies based on the SDSS spectra are rare despite the
presence of dust obscuration. The luminosity of the [NeII] 12.8 \mu m
emission-line is well correlated with the star formation rate (SFR) measured
from the SDSS spectra, and this holds for the star forming, composite, and
AGN-dominated systems. AGN show a clear excess of [NeIII] 15.6 \mu m emission
relative to star forming and composite systems. We find good qualitative
agreement between various parameters that probe the relative contributions of
the AGN and star formation, including: the mid-IR spectral slope, the ratio of
the [NeV] 14.3 \mu m to [NeII] \mu m 12.8 fluxes, the equivalent widths of the
7.7, 11.3, and 17 PAH features, and the optical "D" parameter which
measures the distance a source lies from the locus of star forming galaxies in
the optical BPT emission-line diagnostic diagram. We also consider the behavior
of the three individual PAH features by examining how their flux ratios depend
upon the degree of AGN-dominance. We find that the PAH 11.3 \mu m feature is
significantly suppressed in the most AGN-dominated systems.Comment: in review for ApJ. Updated to address referee's comments. 51 pages,
15 Figures, 13 Table
Feedback in the local LBG Analog Haro 11 as probed by far-UV and X-ray observations
We have re-analyzed FUSE data and obtained new Chandra observations of Haro
11, a local (D_L=88 Mpc) UV luminous galaxy. Haro 11 has a similar far-UV
luminosity (10^10.3 L_\odot), UV surface brightness (10^9.4 L_\odot kpc^-2),
SFR, and metallicity to that observed in Lyman Break Galaxies (LBGs). We show
that Haro 11 has extended, soft thermal (kT~0.68 keV) X-ray emission with a
luminosity and size which scales with the physical properties (e.g. SFR,
stellar mass) of the host galaxy. An enhanced alpha/Fe, ratio of ~4 relative to
solar abundance suggests significant supernovae enrichment. These results are
consistent with the X-ray emission being produced in a shock between a
supernovae driven outflow and the ambient material. The FUV spectra show strong
absorption lines similar to those observed in LBG spectra. A blueshifted
absorption component is identified as a wind outflowing at ~200-280 km/s.
OVI\lambda\lambda1032,1038 emission, the dominant cooling mechanism for coronal
gas at T~10^5.5 K is also observed. If associated with the outflow, the
luminosity of the OVI emission suggests that <20% of the total mechanical
energy from the supernovae and solar winds is being radiated away. This implies
that radiative cooling through OVI is not significantly inhibiting the growth
of the outflowing gas. In contradiction to the findings of Bergvall et al 2006,
we find no convincing evidence of Lyman continuum leakage in Haro 11. We
conclude that the wind has not created a `tunnel' allowing the escape of a
significant fraction of Lyman continuum photons and place a limit on the escape
fraction of f_{esc}<2%. Overall, both Haro 11 and a previously observed LBG
analogue VV 114, provide an invaluable insight into the X-ray and FUV
properties of high redshift LBGs.Comment: Accepted for publication in ApJ, 40 pages, 17 figure
The Role of Starbursts in the Formation of Galaxies & Active Galactic Nuclei
Starbursts are episodes of intense star-formation in the central regions of
galaxies, and are the sites of roughly 25% of the high-mass star-formation in
the local universe. In this contribution I review the role starbursts play in
the formation and evolution of galaxies, the intergalactic medium, and active
galactic nuclei. Four major conclusions are drawn. 1) Starburst galaxies are
good analogues (in fact, the only plausible local analogues) to the known
population of star-forming galaxies at high-redshift. 2) Integrated over cosmic
time, supernova-driven galactic-winds (`superwinds') play an essential role in
the evolution of galaxies and the inter-galactic medium. 3) Circumnuclear
starbursts are an energetically-significant component of the Seyfert
phenomenon. 4) The evolution of the population of the host galaxies of
radio-quiet quasars is significantly different than that of powerful radio
galaxies, and is at least qualitatively consistent with the standard picture of
the hierarchical assembly of massive galaxies at relatively late times.Comment: 16 pages, 4 figures, Royal Society discussion meeting `The formation
of galaxies
- …
