2,002 research outputs found

    Universal Properties of Linear Magnetoresistance in Strongly Disordered Semiconductors

    Full text link
    Linear magnetoresistance occurs in semiconductors as a consequence of strong electrical disorder and is characterized by nonsaturating magnetoresistance that is proportional to the applied magnetic field. By investigating a disordered MnAs-GaAs composite material, it is found that the magnitude of the linear magnetoresistance (LMR) is numerically equal to the carrier mobility over a wide range and is independent of carrier density. This behavior is complementary to the Hall effect that is independent of the mobility and dependent on the carrier density. Moreover, the LMR appears to be insensitive to the details of the disorder and points to a universal explanation of classical LMR that can be applied to other material systems.Comment: Accepted by Phys. Rev. B (2010

    Large Coercivity in Nanostructured Rare-earth-free MnxGa Films

    Full text link
    The magnetic hysteresis of MnxGa films exhibit remarkably large coercive fields as high as 2.5 T when fabricated with nanoscale particles of a suitable size and orientation. This coercivity is an order of magnitude larger than in well-ordered epitaxial film counterparts and bulk materials. The enhanced coercivity is attributed to the combination of large magnetocrystalline anisotropy and ~ 50 nm size nanoparticles. The large coercivity is also replicated in the electrical properties through the anomalous Hall effect. The magnitude of the coercivity approaches that found in rare-earth magnets, making them attractive for rare-earth-free magnet applications

    Antiferromagnetic phase of the gapless semiconductor V3Al

    Full text link
    Discovering new antiferromagnetic compounds is at the forefront of developing future spintronic devices without fringing magnetic fields. The antiferromagnetic gapless semiconducting D03 phase of V3Al was successfully synthesized via arc-melting and annealing. The antiferromagnetic properties were established through synchrotron measurements of the atom-specific magnetic moments, where the magnetic dichroism reveals large and oppositely-oriented moments on individual V atoms. Density functional theory calculations confirmed the stability of a type G antiferromagnetism involving only two-third of the V atoms, while the remaining V atoms are nonmagnetic. Magnetization, x-ray diffraction and transport measurements also support the antiferromagnetism. This archetypal gapless semiconductor may be considered as a cornerstone for future spintronic devices containing antiferromagnetic elements.Comment: Accepted to Physics Review B on 02/23/1

    Magnetic properties of Fe/Dy multilayers: a Monte Carlo investigation

    Full text link
    We investigate the magnetic properties of a Heisenberg ferrimagnetic multilayer by using Monte Carlo simulations. The aim of this work is to study the local structural anisotropy model which is a possible origin of the perpendicular magnetic anisotropy in transition metal/rare earth amorphous multilayers. We have considered a face centered cubic lattice where each site is occupied by a classical Heisenberg spin. We have introduced in our model of amorphous multilayers a small fraction of crystallized Fe-Dy nanoclusters with a mean anisotropy axis along the deposition direction. We show that a competition in the energy terms takes place between the mean uniaxial anisotropy of the Dy atoms in the nanoclusters and the random anisotropy of the Dy atoms in the matrix.Comment: accepte pour publication - Proceeding of the Joint European Magnetic Symposia (JEMS 06) - Journal of Magnetism and Magnetic Material

    Hall carrier density and magnetoresistance measurements in thin film vanadium dioxide across the metal-insulator transition

    Get PDF
    Temperature dependent magneto-transport measurements in magnetic fields of up to 12 Tesla were performed on thin film vanadium dioxide (VO2) across the metal-insulator transition (MIT). The Hall carrier density increases by 4 orders of magnitude at the MIT and accounts almost entirely for the resistance change. The Hall mobility varies little across the MIT and remains low, ~0.1cm2/V sec. Electrons are found to be the major carriers on both sides of the MIT. Small positive magnetoresistance in the semiconducting phase is measured

    Monte Carlo investigation of the magnetic anisotropy in Fe/Dy multilayers

    Full text link
    By Monte Carlo simulations in the canonical ensemble, we have studied the magnetic anisotropy in Fe/Dy amorphous multilayers. This work has been motivated by experimental results which show a clear correlation between the magnetic perpendicular anisotropy and the substrate temperature during elaboration of the samples. Our aim is to relate macroscopic magnetic properties of the multilayers to their structure, more precisely their concentration profile. Our model is based on concentration dependent exchange interactions and spin values, on random magnetic anisotropy and on the existence of locally ordered clusters that leads to a perpendicular magnetisation. Our results evidence that a compensation point occurs in the case of an abrupt concentration profile. Moreover, an increase of the noncollinearity of the atomic moments has been evidenced when the Dy anisotropy constant value grows. We have also shown the existence of inhomogeneous magnetisation profiles along the samples which are related to the concentration profiles

    Prediction of Ferromagnetic Ground State of NaCl-type FeN

    Full text link
    Ab-initio results for structural and electronic properties of NaCl-type FeN are presented in a framework of plane-wave and ultrasoft pseudopotentials. Competition among different magnetic ordering is examined. We find the ferromagnetic phase stable overall. Stabilization over the unpolarized phase is obtained by splitting one flat t_2g-type band crossing the Fermi energy. A comparison with CrN is considered. We find large differences in the properties of the two systems that can be addressed to the smaller ionicity and magnetization of FeN.Comment: 5 pages, 4 figures, twocolumn latex style Sentence changed in Section III line 1

    Cardiopulmonary Response to Videogaming: Slaying Monsters Using Motion Sensor Versus Joystick Devices

    Get PDF
    Objective: Replacing physical activity with videogaming has been implicated in causing obesity. Studies have shown that using motion-sensing controllers with activity-promoting videogames expends energy comparable to aerobic exercise; however, effects of motion-sensing controllers have not been examined with traditional (non–exercise-promoting) videogames. Materials and Methods: We measured indirect calorimetry and heart rate in 14 subjects during rest and traditional videogaming using motion sensor and joystick controllers. Results: Energy expenditure was higher while subjects were playing with the motion sensor (1.30±0.32 kcal/kg/hour) than with the joystick (1.07±0.26 kcal/kg/hour; P<0.01) or resting (0.91±0.24 kcal/kg/hour; P<0.01). Oxygen consumption during videogaming averaged 15.7 percent of predicted maximum for the motion sensor and 11.8 percent of maximum for the joystick. Minute ventilation was higher playing with the motion sensor (10.7±3.5 L/minute) than with the joystick (8.6±1.8 L/minute; P<0.02) or resting (6.7±1.4 L/minute; P<0.001), predominantly because of higher respiratory rates (15.2±4.3 versus 20.3±2.8 versus 20.4±4.2 beats/minute for resting, the joystick, and the motion sensor, respectively; P<0.001); tidal volume did not change significantly. Peak heart rate during gaming was 16.4 percent higher than resting (78.0±12.0) for joystick (90.1±15.0; P=0.002) and 17.4 percent higher for the motion sensor (91.6±14.1; P=0.002); mean heart rate did not differ significantly. Conclusions: Playing with a motion sensor burned significantly more calories than with a joystick, but the energy expended was modest. With both consoles, the increased respiratory rate without increasing tidal volume and the increased peak heart rate without increasing mean heart rate are consistent with psychological stimulation from videogaming, rather than a result of exercise. We conclude that using a motion sensor with traditional videogames does not provide adequate energy expenditure to provide cardiovascular conditioning

    Theory of anyon excitons: Relation to excitons of nu=1/3 and nu=2/3 incompressible liquids

    Get PDF
    Elementary excitations of incompressible quantum liquids (IQL's) are anyons, i.e., quasiparticles carrying fractional charges and obeying fractional statistics. To find out how the properties of these quasiparticles manifest themselves in the optical spectra, we have developed the anyon exciton model (AEM) and compared the results with the finite-size data for excitons of nu=1/3 and nu=2/3 IQL's. The model considers an exciton as a neutral composite consisting of three quasielectrons and a single hole. The AEM works well when the separation between electron and hole confinement planes, h, is larger than the magnetic length l. In the framework of the AEM an exciton possesses momentum k and two internal quantum numbers, one of which can be chosen as the angular momentum, L, of the k=0 state. Existence of the internal degrees of freedom results in the multiple branch energy spectrum, crater-like electron density shape and 120 degrees density correlations for k=0 excitons, and the splitting of the electron shell into bunches for non-zero k excitons. For h larger than 2l the bottom states obey the superselection rule L=3m (m are integers starting from 2), all of them are hard core states. For h nearly 2l there is one-to-one correspondence between the low-energy spectra found for the AEM and the many- electron exciton spectra of the nu=2/3 IQL, whereas some states are absent from the many-electron spectra of the nu=1/3 IQL. We argue that this striking difference in the spectra originates from the different populational statistics of the quasielectrons of charge conjugate IQL's and show that the proper account of the statistical requirements eliminates excessive states from the spectrum. Apparently, this phenomenon is the first manifestation of the exclusion statistics in the anyon bound states.Comment: 26 pages with 9 figures, typos correcte

    Leptin fails to blunt the lipopolysaccharide-induced activation of the hypothalamic-pituitary-adrenal axis in rats

    Get PDF
    Copyright @ 2013 The authors. This work is licensed under a Creative Commons Attribution 3.0 Unported License.Obesity is a risk factor for sepsis morbidity and mortality, whereas the hypothalamic-pituitary-adrenal (HPA) axis plays a protective role in the body's defence against sepsis. Sepsis induces a profound systemic immune response and cytokines serve as excellent markers for sepsis as they act as mediators of the immune response. Evidence suggests that the adipokine leptin may play a pathogenic role in sepsis. Mouse endotoxaemic models present with elevated leptin levels and exogenously added leptin increased mortality whereas human septic patients have elevated circulating levels of the soluble leptin receptor (Ob-Re). Evidence suggests that leptin can inhibit the regulation of the HPA axis. Thus, leptin may suppress the HPA axis, impairing its protective role in sepsis.We hypothesised that leptin would attenuate the HPA axis response to sepsis.We investigated the direct effects of an i.p. injection of 2 mg/kg leptin on the HPA axis response to intraperitoneally injected 25 μg/kg lipopolysaccharide (LPS) in the male Wistar rat. We found that LPS potently activated the HPA axis, as shown by significantly increased plasma stress hormones, ACTH and corticosterone, and increased plasma interleukin 1β (IL1β) levels, 2 h after administration. Pre-treatment with leptin, 2 h before LPS administration, did not influence the HPA axis response to LPS. In turn, LPS did not affect plasma leptin levels. Our findings suggest that leptin does not influence HPA function or IL1b secretion in a rat model of LPS-induced sepsis, and thus that leptin is unlikely to be involved in the acute-phase endocrine response to bacterial infection in rats.The section is funded by grants from the MRC, BBSRC, NIHR and an Integrative Mammalian Biology (IMB) Capacity Building Award, and by a FP7-HEALTH-2009-241592 EuroCHIP grant and is supported by the NIHR Imperial Biomedical Research Centre Funding Scheme. This work is supported by a BBSRC Doctoral Training-Strategic Skills Award grant (BB/F017340/1)
    corecore