17 research outputs found
A novel point mutation A170P in the SHOX gene defines impaired nuclear translocation as a molecular cause for Léri-Weill dyschondrosteosis and Langer dysplasia.
A novel point mutation A170P in the SHOX gene defines impaired nuclear translocation as a molecular cause for Léri-Weill dyschondrosteosis and Langer dysplasia.
Schizophrenia precipitates as dominant inheritance in a pedigree due to accumulation of rare genomic variants including the DUP3p26.3 and DUP16p23.3 duplications.
The conserved <em>ASTN2/BRINP1</em> locus at 9q33.1-33.2 is associated with major psychiatric disorders in a large pedigree from Southern Spain.
We investigated the genetic causes of major mental disorders (MMDs) including schizophrenia, bipolar disorder I, major depressive disorder and attention deficit hyperactive disorder, in a large family pedigree from Alpujarras, South of Spain, a region with high prevalence of psychotic disorders. We applied a systematic genomic approach based on karyotyping (n = 4), genotyping by genome-wide SNP array (n = 34) and whole-genome sequencing (n = 12). We performed genome-wide linkage analysis, family-based association analysis and polygenic risk score estimates. Significant linkage was obtained at chromosome 9 (9q33.1-33.2, LOD score = 4.11), a suggestive region that contains five candidate genes ASTN2, BRINP1, C5, TLR4 and TRIM32, previously associated with MMDs. Comprehensive analysis associated the MMD phenotype with genes of the immune system with dual brain functions. Moreover, the psychotic phenotype was enriched for genes involved in synapsis. These results should be considered once studying the genetics of psychiatric disorders in other families, especially the ones from the same region, since founder effects may be related to the high prevalence
Association of Monoclonal Expansion of Epstein-Barr Virus-Negative CD158a+ NK Cells Secreting Large Amounts of Gamma Interferon with Hemophagocytic Lymphohistiocytosis
Epigenetic differences arise during the lifetime of monozygotic twins
Monozygous twins share a common genotype. However, most monozygotic twin pairs are not identical; several types of phenotypic discordance may be observed, such as differences in susceptibilities to disease and a wide range of anthropomorphic features. There are several possible explanations for these observations, but one is the existence of epigenetic differences. To address this issue, we examined the global and locus-specific differences in DNA methylation and histone acetylation of a large cohort of monozygotic twins. We found that, although twins are epigenetically indistinguishable during the early years of life, older monozygous twins exhibited remarkable differences in their overall content and genomic distribution of 5-methylcytosine DNA and histone acetylation, affecting their gene-expression portrait. These findings indicate how an appreciation of epigenetics is missing from our understanding of how different phenotypes can be originated from the same genotyp
Amino acid patterns within short consensus repeats define conserved duplicons shared by genes of the RCA complex.
C1 - Journal Articles RefereedComplement control proteins (CCPs) contain repeated protein domains, short consensus repeats (SCRs), which must be relevant to diverse functions such as complement activation, coagulation, viral binding, fetal implantation, and self-nonself recognition. Although SCRs share some discontinuous and imperfect motifs, there are many variable positions and indels making classification in subfamilies extremely difficult. Using domain-by-domain phylogenetic analysis, we have found that most domains can be classified into only 11 subfamilies, designated a, b, c, d, e, f, g, h, i, j, or k and identified by critical residues. Each particular CCP is characterized by the order of representatives of the subfamilies. Human complement receptor 1 (CR1) has ajefbkd repeated four times and followed by ch. The classification crosses CCPs and indicates that a particular CCP is a function of the mix of SCRs. The aje set is a feature of several CCPs including human CR1 and DAF and murine Crry and appears to be associated with the success or failure of implantation inter alia. This approach facilitates genomic analysis of available sequences and suggests a framework for the evolution of CCPs. Units of duplication range from single SCRs, to septamers such as efbkdaj, to extensive segments such as MCP-CR1L. Imperfections of duplication with subsequent deletion have contributed to diversification
