19,892 research outputs found
Field Studies of Sedimentary Sequences in Eastern Hurd Peninsula Central Livingston Island, South Shetland Islands
Nonlocal feedback in ferromagnetic resonance
Ferromagnetic resonance in thin films is analyzed under the influence of
spatiotemporal feedback effects. The equation of motion for the magnetization
dynamics is nonlocal in both space and time and includes isotropic, anisotropic
and dipolar energy contributions as well as the conserved Gilbert- and the
non-conserved Bloch-damping. We derive an analytical expression for the
peak-to-peak linewidth. It consists of four separate parts originated by
Gilbert damping, Bloch-damping, a mixed Gilbert-Bloch component and a
contribution arising from retardation. In an intermediate frequency regime the
results are comparable with the commonly used Landau-Lifshitz-Gilbert theory
combined with two-magnon processes. Retardation effects together with Gilbert
damping lead to a linewidth the frequency dependence of which becomes strongly
nonlinear. The relevance and the applicability of our approach to ferromagnetic
resonance experiments is discussed.Comment: 22 pages, 9 figure
The role of gravity on macrosegregation in alloys
During dendritic solidification liquid flow is induced both by buoyancy forces and solidification shrinkage. There is strong evidence that the major reason for the liquid flow is the former, i.e., thermosolutal convection. In the microgravity environment, it is thought that the thermosolutal convection will be greatly diminished so that convection will be confined mainly to the flow of interdendritic liquid required to satisfy the solidification shrinkage. An attempt is made to provide improved models of dendritic solidification with emphasis on convection and macrosegregation. Macrosegregation is an extremely important subject to the commercial casting community. The simulation of thermosolutal convection in directionally solidified (DS) alloys is described. A linear stability analysis was used to predict marginal stability curves for a system that comprises a mushy zone underlying an all-liquid zone. The supercritical thermosolutal convection in directionally solidified dendritic alloys was also modeled. The model assumes a nonconvective initial state with planar and horizontal isotherms and isoconcentration that move upward at a constant solidification velocity. Results are presented for systems involving lead-tin alloys and show significant differences with results of plane-front solidification
Moments and central limit theorems for some multivariate Poisson functionals
This paper deals with Poisson processes on an arbitrary measurable space.
Using a direct approach, we derive formulae for moments and cumulants of a
vector of multiple Wiener-It\^o integrals with respect to the compensated
Poisson process. Second, a multivariate central limit theorem is shown for a
vector whose components admit a finite chaos expansion of the type of a Poisson
U-statistic. The approach is based on recent results of Peccati et al.\
combining Malliavin calculus and Stein's method, and also yields Berry-Esseen
type bounds. As applications, moment formulae and central limit theorems for
general geometric functionals of intersection processes associated with a
stationary Poisson process of -dimensional flats in are discussed
Identification of the dominant precession damping mechanism in Fe, Co, and Ni by first-principles calculations
The Landau-Lifshitz equation reliably describes magnetization dynamics using
a phenomenological treatment of damping. This paper presents first-principles
calculations of the damping parameters for Fe, Co, and Ni that quantitatively
agree with existing ferromagnetic resonance measurements. This agreement
establishes the dominant damping mechanism for these systems and takes a
significant step toward predicting and tailoring the damping constants of new
materials.Comment: 4 pages, 1 figur
Coupled multimode optomechanics in the microwave regime
The motion of micro- and nanomechanical resonators can be coupled to
electromagnetic fields. This allows to explore the mutual interaction and
introduces new means to manipulate and control both light and mechanical
motion. Such optomechanical systems have recently been implemented in
nanoelectromechanical systems involving a nanomechanical beam coupled to a
superconducting microwave resonator. Here, we propose optomechanical systems
that involve multiple, coupled microwave resonators. In contrast to similar
systems in the optical realm, the coupling frequency governing photon exchange
between microwave modes is naturally comparable to typical mechanical
frequencies. For instance this enables new ways to manipulate the microwave
field, such as mechanically driving coherent photon dynamics between different
modes. In particular we investigate two setups where the electromagnetic field
is coupled either linearly or quadratically to the displacement of a
nanomechanical beam. The latter scheme allows to perform QND Fock state
detection. For experimentally realistic parameters we predict the possibility
to measure an individual quantum jump from the mechanical ground state to the
first excited state.Comment: 6 pages, 4 figures, 1 tabl
Interrelationships between serum 25-hydroxycalciferol and bone mass in adults on long term antiepileptic drug therapy
Tuning Interparticle Hydrogen Bonding in Shear-Jamming Suspensions: Kinetic Effects and Consequences for Tribology and Rheology
The shear-jamming of dense suspensions can be strongly affected by
molecular-scale interactions between particles, e.g. by chemically controlling
their propensity for hydrogen bonding. However, hydrogen bonding not only
enhances interparticle friction, a critical parameter for shear jamming, but
also introduces (reversible) adhesion, whose interplay with friction in
shear-jamming systems has so far remained unclear. Here, we present atomic
force microscopy studies to assess interparticle adhesion, its relationship to
friction, and how these attributes are influenced by urea, a molecule that
interferes with hydrogen bonding. We characterize the kinetics of this process
with nuclear magnetic resonance, relating it to the time dependence of the
macroscopic flow behavior with rheological measurements. We find that
time-dependent urea sorption reduces friction and adhesion, causing a shift in
the shear-jamming onset. These results extend our mechanistic understanding of
chemical effects on the nature of shear jamming, promising new avenues for
fundamental studies and applications alike
- …
