892 research outputs found
Luttinger Liquid Instability in the One Dimensional t-J Model
We study the t-J model in one dimension by numerically projecting the true
ground state from a Luttinger liquid trial wave function. We find the model
exhibits Luttinger liquid behavior for most of the phase diagram in which
interaction strength and density are varied. However at small densities and
high interaction strengths a new phase with a gap to spin excitations and
enhanced superconducting correlations is found. We show this phase is a
Luther-Emery liquid and study its correlation functions.Comment: REVTEX, 11 pages. 4 Figures available on request from
[email protected]
Quantum simulation of multiple-exciton generation in a nanocrystal by a single photon
We have shown theoretically that efficient multiple exciton generation (MEG)
by a single photon can be observed in small nanocrystals (NCs). Our quantum
simulations that include hundreds of thousands of exciton and multi-exciton
states demonstrate that the complex time-dependent dynamics of these states in
a closed electronic system yields a saturated MEG effect on a picosecond
timescale. Including phonon relaxation confirms that efficient MEG requires the
exciton--biexciton coupling time to be faster than exciton relaxation time
Limits on Phase Separation for Two-Dimensional Strongly Correlated Electrons
From calculations of the high temperature series for the free energy of the
two-dimensional t-J model we construct series for ratios of the free energy per
hole. The ratios can be extrapolated very accurately to low temperatures and
used to investigate phase separation. Our results confirm that phase separation
occurs only for J/t greater than 1.2. Also, the phase transition into the phase
separated state has Tc of approximately 0.25J for large J/t.Comment: 4 pages, 6 figure
Green's Function Monte Carlo for Lattice Fermions: Application to the t-J Model
We develop a general numerical method to study the zero temperature
properties of strongly correlated electron models on large lattices. The
technique, which resembles Green's Function Monte Carlo, projects the ground
state component from a trial wave function with no approximations. We use this
method to determine the phase diagram of the two-dimensional t-J model, using
the Maxwell construction to investigate electronic phase separation. The shell
effects of fermions on finite-sized periodic lattices are minimized by keeping
the number of electrons fixed at a closed-shell configuration and varying the
size of the lattice. Results obtained for various electron numbers
corresponding to different closed-shells indicate that the finite-size effects
in our calculation are small. For any value of interaction strength, we find
that there is always a value of the electron density above which the system can
lower its energy by forming a two-component phase separated state. Our results
are compared with other calculations on the t-J model. We find that the most
accurate results are consistent with phase separation at all interaction
strengths.Comment: 22 pages, 22 figure
Photoluminescence Spectroscopy of the Molecular Biexciton in Vertically Stacked Quantum Dot Pairs
We present photoluminescence studies of the molecular neutral
biexciton-exciton spectra of individual vertically stacked InAs/GaAs quantum
dot pairs. We tune either the hole or the electron levels of the two dots into
tunneling resonances. The spectra are described well within a few-level,
few-particle molecular model. Their properties can be modified broadly by an
electric field and by structural design, which makes them highly attractive for
controlling nonlinear optical properties.Comment: 4 pages, 5 figures, (v2, revision based on reviewers comments,
published
Solutions to the Multi-Component 1/R Hubbard Model
In this work we introduce one dimensional multi-component Hubbard model of
1/r hopping and U on-site energy. The wavefunctions, the spectrum and the
thermodynamics are studied for this model in the strong interaction limit
. In this limit, the system is a special example of Luttinger
liquids, exhibiting spin-charge separation in the full Hilbert space.
Speculations on the physical properties of the model at finite on-site energy
are also discussed.Comment: 9 pages, revtex, Princeton-May1
Phase separation at all interaction strengths in the t-J model
We investigate the phase diagram of the two-dimensional t-J model using a
recently developed Green's Function Monte Carlo method for lattice fermions. We
use the technique to calculate exact ground-state energies of the model on
large lattices. In contrast to many previous studies, we find the model phase
separates for all values of J/t. In particular, it is unstable at the hole
dopings and interaction strengths at which the model was thought to describe
the cuprate superconductors.Comment: Revtex, 4 pages, 3 figures. Some minor changes were made to the text
and figures, and some references were adde
Stripes due to the next-nearest neighbor exchange in high-Tc cuprates
We propose a possible mechanism of the charge stripe order due to the
next-nearest neighbor exchange interaction J' in the two-dimensional t-J model,
based on the concept of the phase separation. We also calculate some hole
correlation functions of the finite cluster of the model using the numerical
diagonalization, to examine the realization of the mechanism. It is also found
that the next-nearest neighbor hopping t' suppresses the stripe order induced
by the present mechanism for t'0.Comment: 4 pages, Revtex, with 5 eps figures, to appear in Phys. Rev. B Rapid
Communications (April 1, 2001
- …
