3,554 research outputs found

    A "fast growth" method of computing free energy differences

    Full text link
    Let Delta F be the free energy difference between two equilibrium states of a system. An established method of numerically computing Delta F involves a single, long ``switching simulation'', during which the system is driven reversibly from one state to the other (slow growth, or adiabatic switching). Here we study a method of obtaining the same result from numerous independent, irreversible simulations of much shorter duration (fast growth). We illustrate the fast growth method, computing the excess chemical potential of a Lennard-Jones fluid as a test case, and we examine the performance of fast growth as a practical computational tool.Comment: 17 pages + 4 figures, accepted for publication in J.Chem.Phy

    Directional solidification of flake and nodular cast iron during KC-135 low-g maneuvers

    Get PDF
    Alloys solidified in a low-gravity environment can, due to the elimination of sedimentation and convection, form unique and often desirable microstructures. One method of studying the effects of low-gravity (low-g) on alloy solidification was the use of the NASA KC-135 aircraft flying repetitive low-g maneuvers. Each maneuver gives from 20 to 30 seconds of low-g which is between about 0.1 and 0.001 gravity. A directional solidification furnace was used to study the behavior of off eutectic composition case irons in a low-g environment. The solidification interface of hypereutectic flake and spheroidal graphite case irons was slowly advanced through a rod sample, 5 mm in diameter. Controlled solidification was continued through a number of aircraft parabolas. The known solidification rate of the sample was then correlated with accelerometer data to determine the gravity level during solidification for any location of the sample. The thermal gradient and solidification rate were controlled independently. Samples run on the KC-135 aircraft exhibited bands of coarser graphite or of larger nodules usually corresponding to the regions solidified under low-g. Samples containing high phosphorous (used in order to determine the eutectic cell) exhibited larger eutectic cells in the low-g zone, followed by a band of coarser graphite

    Energy spectrum of turbulent fluctuations in boundary driven reduced magnetohydrodynamics

    Full text link
    The nonlinear dynamics of a bundle of magnetic flux ropes driven by stationary fluid motions at their endpoints is studied, by performing numerical simulations of the magnetohydrodynamic (MHD) equations. The development of MHD turbulence is shown, where the system reaches a state that is characterized by the ratio between the Alfven time (the time for incompressible MHD waves to travel along the field lines) and the convective time scale of the driving motions. This ratio of time scales determines the energy spectra and the relaxation toward different regimes ranging from weak to strong turbulence. A connection is made with phenomenological theories for the energy spectra in MHD turbulence.Comment: Published in Physics of Plasma

    Preliminary science report on the directional solidification of hypereutectic cast iron during KC-135 low-G maneuvers

    Get PDF
    An ADSS-P directional solidification furnace was reconfigured for operation on the KC-135 low-g aircraft. The system offers many advantages over quench ingot methods for study of the effects of sedimentation and convection on alloy formation. The directional sodification furnace system was first flown during the September 1982 series of flights. The microstructure of the hypereutectic cast iron sample solidified on one of these flights suggests a low-g effect on graphite morphology. Further experiments are needed to ascertain that this effect is due to low-gravity and to deduce which of the possible mechanisms is responsible for it

    Magnetospheric considerations for solar system ice state

    Get PDF
    The current lattice configuration of the water ice on the surfaces of the inner satellites of Jupiter and Saturn is likely shaped by many factors. But laboratory experiments have found that energetic proton irradiation can cause a transition in the structure of pure water ice from crystalline to amorphous. It is not known to what extent this process is competitive with other processes in solar system contexts. For example, surface regions that are rich in water ice may be too warm for this effect to be important, even if the energetic proton bombardment rate is very high. In this paper, we make predictions, based on particle flux levels and other considerations, about where in the magnetospheres of Jupiter and Saturn the ∼MeV proton irradiation mechanism should be most relevant. Our results support the conclusions of Hansen and McCord (2004), who related relative level of radiation on the three outer Galilean satellites to the amorphous ice content within the top 1 mm of surface. We argue here that if magnetospheric effects are considered more carefully, the correlation is even more compelling. Crystalline ice is by far the dominant ice state detected on the inner Saturnian satellites and, as we show here, the flux of bombarding energetic protons onto these bodies is much smaller than at the inner Jovian satellites. Therefore, the ice on the Saturnian satellites also corroborates the correlation

    Formation of Hydrogen, Oxygen, and Hydrogen Peroxide in Electron Irradiated Crystalline Water Ice

    Full text link
    Water ice is abundant both astrophysically, for example in molecular clouds, and in planetary systems. The Kuiper belt objects, many satellites of the outer solar system, the nuclei of comets and some planetary rings are all known to be water-rich. Processing of water ice by energetic particles and ultraviolet photons plays an important role in astrochemistry. To explore the detailed nature of this processing, we have conducted a systematic laboratory study of the irradiation of crystalline water ice in an ultrahigh vacuum setup by energetic electrons holding a linear energy transfer of 4.3 +/- 0.1 keV mm-1. The irradiated samples were monitored during the experiment both on line and in situ via mass spectrometry (gas phase) and Fourier transform infrared spectroscopy (solid state). We observed the production of hydrogen and oxygen, both molecular and atomic, and of hydrogen peroxide. The likely reaction mechanisms responsible for these species are discussed. Additional formation routes were derived from the sublimation profiles of molecular hydrogen (90-140 K), molecular oxygen (147 -151 K) and hydrogen peroxide (170 K). We also present evidence on the involvement of hydroxyl radicals and possibly oxygen atoms as building blocks to yield hydrogen peroxide at low temperatures (12 K) and via a diffusion-controlled mechanism in the warming up phase of the irradiated sample.Comment: ApJ, March 2006, v639 issue, 43 pages, 7 figure

    Game engines selection framework for high-fidelity serious applications

    Get PDF
    Serious games represent the state-of-the-art in the convergence of electronic gaming technologies with instructional design principles and pedagogies. Despite the value of high-fidelity content in engaging learners and providing realistic training environments, building games which deliver high levels of visual and functional realism is a complex, time consuming and expensive process. Therefore, commercial game engines, which provide a development environment and resources to more rapidly create high-fidelity virtual worlds, are increasingly used for serious as well as for entertainment applications. Towards this intention, the authors propose a new framework for the selection of game engines for serious applications and sets out five elements for analysis of engines in order to create a benchmarking approach to the validation of game engine selection. Selection criteria for game engines and the choice of platform for Serious Games are substantially different from entertainment games, as Serious Games have very different objectives, emphases and technical requirements. In particular, the convergence of training simulators with serious games, made possible by increasing hardware rendering capacity is enabling the creation of high-fidelity serious games, which challenge existing instructional approaches. This paper overviews several game engines that are suitable for high-fidelity serious games, using the proposed framework

    Cluster J Mycobacteriophages: Intron Splicing in Capsid and Tail Genes

    Get PDF
    Bacteriophages isolated on Mycobacterium smegmatis mc2155 represent many distinct genomes sharing little or no DNA sequence similarity. The genomes are architecturally mosaic and are replete with genes of unknown function. A new group of genomes sharing substantial nucleotide sequences constitute Cluster J. The six mycobacteriophages forming Cluster J are morphologically members of the Siphoviridae, but have unusually long genomes ranging from 106.3 to 117 kbp. Reconstruction of the capsid by cryo-electron microscopy of mycobacteriophage BAKA reveals an icosahedral structure with a triangulation number of 13. All six phages are temperate and homoimmune, and prophage establishment involves integration into a tRNA-Leu gene not previously identified as a mycobacterial attB site for phage integration. The Cluster J genomes provide two examples of intron splicing within the virion structural genes, one in a major capsid subunit gene, and one in a tail gene. These genomes also contain numerous free-standing HNH homing endonuclease, and comparative analysis reveals how these could contribute to genome mosaicism. The unusual Cluster J genomes provide new insights into phage genome architecture, gene function, capsid structure, gene mobility, intron splicing, and evolution. © 2013 Pope et al
    corecore