2,480 research outputs found

    Orchestrating learning activities using the CADMOS learning design tool

    Get PDF
    This paper gives an overview of CADMOS (CoursewAre Development Methodology for Open instructional Systems), a graphical IMS-LD Level A & B compliant learning design (LD) tool, which promotes the concept of “separation of concerns” during the design process, via the creation of two models: the conceptual model, which describes the learning activities and the corresponding learning resources, and the flow model, which describes the orchestration of these activities. According to the feedback from an evaluation case study with 36 participants, reported in this paper, CADMOS is a user-friendly tool that allows educational practitioners to design flows of learning activities using a layered approach

    A review, timeline, and categorization of learning design tools

    Get PDF
    Enabling teachers to define or portray efficient teaching ideas for sharing, reuse or adaptation has attracted the interest of Learning Design researchers and has led to the development of a variety of learning design tools. In this paper, we introduce a multi-dimensional framework for the analysis of learning design tools and use it to review twenty-nine tools currently available to researchers and practitioners. Lastly, we categorise these tools according to the main functionality that they offer

    Design approaches in technology enhanced learning

    Get PDF
    Design is a critical to the successful development of any interactive learning environment (ILE). Moreover, in technology enhanced learning (TEL), the design process requires input from many diverse areas of expertise. As such, anyone undertaking tool development is required to directly address the design challenge from multiple perspectives. We provide a motivation and rationale for design approaches for learning technologies that draws upon Simon's seminal proposition of Design Science (Simon, 1969). We then review the application of Design Experiments (Brown, 1992) and Design Patterns (Alexander et al., 1977) and argue that a patterns approach has the potential to address many of the critical challenges faced by learning technologists

    Introduction to cross LAK 2016: Learning analytics across spaces

    Full text link
    For the LAK (Learning Analytics and Knowledge) community, it is highly important to pay attention to the development and deployment of learning analytics solutions for blended learning scenarios where students work at diverse digital and physical learning spaces and interact in different modalities. This workshop has been a first attempt in gathering the sub-community of LAK researchers, learning scientists and researchers from other communities, interested in ubiquitous, mobile and/or face-to-face learning analytics. It was clear for all the attendees that a key concern that has not been deeply explored yet is associated with the mechanisms to integrate and coordinate learning analytics to provide continued support to learning across digital and physical spaces. The two main goals of the workshop were to share perspectives and identify a set of guidelines that could be offered to teachers, researchers or designers to create and connect Learning Analytics solutions according to the pedagogical needs and contextual constraints to provide support across digital and physical learning spaces

    Representing CSCL macro-scripts using IMS LD lessons learned

    Get PDF
    Extended version of Hernández-Leo, D., Burgos, D., Tattersall, C., Koper, R. Representing Computer-Supported Collaborative Learning macro-scripts using IMS Learning Design Proceedings of the Second European Conference on Technology Enhanced Learning, CEUR Workshop Proceedings, EC-TEL'07, Crete, Greece, September 2007.This paper analyses how CSCL (Computer-Supported Collaborative Learning) macro-scripts can be implemented using IMS Learning Design (LD). CSCL macro-scripts are machine-readable collaboration scripts that structure the activities making up a learning process. In order to support a systematic analysis of the problem, we point out the requirements of CSCL macro-scripts for their representation using LD. These requirements include common collaborative learning mechanisms (group composition, role and resource distribution and coordination) and flexibility demands (such as flexible group composition). Each of these needs is described and illustrated by means of two examples proposed in the literature and which reflect the identified requirements well: Universanté and ArgueGraph Scripts. These scripts are used in the article to expose and exemplify the realization of the requirements using LD. The problem is approached from two angles – that of the LD notation itself and also from related tools and specifications. The paper positions related work and discusses the possibility of generalizing the lessons learned to the representation of CSCL micro-scripts

    System Orchestration Support for a Collaborative Blended Learning Flow

    Get PDF
    Portable and interactive technologies are changing the nature of collaborative learning practices and open up new possibilities for Computer Supported Collaborative Learning (CSCL). Now, activities occurring in and beyond the classroom can be combined and integrated leading to a new type of complex collaborative blended learning scenarios. However, to organize and structure these scenarios is challenging and represent a workload for practitioners, which hinder the adoption of these technology-enhanced practices. As an approach to alleviate this workload, this paper proposes a proof of concept of a technological solution to overcome the limitations detected in an analysis of an actual collaborative blended learning experiment carried out in a previous study. The solution consists on a Unit of Learning suitable to be instantiated with IMS Learning Design and complemented by a GenericService Integration system. This chapter also discusses to which extent the proposed solution covers the limitations detected in the previous study and how useful could be for reducing the orchestration effort in future experiences.This work has been partially funded by the Project Learn3 (TIN2008- 05163/TSI) from the Plan Nacional I+D+I and "Investigación y Desarrollo de Tecnologías para el e-Learning en la Comunidad de Madrid” funded by the Madrid Regional Government under grant No. S2009/TIC-1650

    InstanceCollage: a tool for the particularization of collaborative IMS-LD scripts

    Get PDF
    Current research work in e-learning and more specifically in the field of CSCL (Computer Supported Collaborative Learning) deals with design of collaborative activities, according to computer-interpretable specifications, such as IMS Learning Design, and their posterior enactment using LMSs (Learning Management Systems). A script that describes such collaborative activities is typically designed beforehand in order to structure collaboration, and defines the features that determine the behavior of the LMS, for instance, the sequence of activities or the groups/role distribution. In CSCL settings, group management and composition are especially relevant and affect the chances of achieving the expected learning outcomes. This paper presents a software tool, named InstanceCollage, which aims at facilitating the configuration and population of groups for IMS-LD scripts created with the authoring tool Collage, and discusses the implications of the IMS-LD specification with respect to this task. InstanceCollage is designed to process collaboration scripts based on CLFPs (Collaborative Learning Flow Patterns). Using this type of patterns, InstanceCollage focuses on the importance of understanding the function of groups within the learning strategy of the script. This paper describes the approach taken in InstanceCollage to facilitate this understanding for non-expert users. Additionally, two case studies are presented, which represent complex authentic collaborative learning scenarios, as a proof of concept of the functionality of this tool. The case studies are also used to illustrate the requirements of group configuration tools and to show that InstanceCollage complies to such requirements

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    COLLAGE: a collaborative Learning Design editor based on patterns

    Get PDF
    CSCL (Computer-Supported Collaborative Learning) constitutes a significant field that has drawn the attention of many researchers and practitioners (Dillenbourg, 2002). This domain is characterized by the coexistence of very different expectations, requirements, knowledge and interests posed by both collaborative learning practitioners and experts in information and communication technologies. In other words, CSCL is an intrinsically interdisciplinary field that implies a need for mutual understanding among the implied stakeholders. This need demands the active participation of all these stakeholders during the whole development cycle of CSCL solutions. Participatory Design (PD) approaches (Muller & Kuhn, 1993) propose a diversity of theories, practices, etc. with the goal of working directly with users and other stakeholders in the design of social systems. That is, PD methodologies define processes where users and developers work together during a certain period of time, while they identify the requirements of an application. In the CSCL case, it has been shown that it is not efficient enough to simply perform the identification and analysis of requirements for the development of CSCL solutions that support effective ways of learning. Collaborative learning practitioners also become active players in the process of customizing technological solutions to their particular needs in every learning situation. PD poses a new requirement that CSCL developers should tackle: how to obtain technological solutions for collaborative learning capable of being particularized/customized by practitioners that usually do not have technological skills

    Tamoxifen mechanically deactivates hepatic stellate cells via the G protein-coupled estrogen receptor

    Get PDF
    Tamoxifen has been used for many years to target estrogen receptor signalling in breast cancer cells. Tamoxifen is also an agonist of the G protein-coupled estrogen receptor (GPER), a GPCR ubiquitously expressed in tissues that mediates the acute response to estrogens. Here we report that tamoxifen promotes mechanical quiescence in hepatic stellate cells (HSCs), stromal fibroblast-like cells whose activation triggers and perpetuates liver fibrosis in hepatocellular carcinomas. This mechanical deactivation is mediated by the GPER/RhoA/myosin axis and induces YAP deactivation. We report that tamoxifen decreases the levels of hypoxia-inducible factor-1 alpha (HIF-1α) and the synthesis of extracellular matrix proteins through a mechanical mechanism that involves actomyosin-dependent contractility and mechanosensing of tissue stiffness. Our results implicate GPER-mediated estrogen signalling in the mechanosensory-driven activation of HSCs and put forward estrogenic signalling as an option for mechanical reprogramming of myofibroblast-like cells in the tumour microenvironment. Tamoxifen, with half a century of safe clinical use, might lead this strategy of drug repositioning.Peer reviewe
    corecore