13 research outputs found
A radiation of Psylliodes flea beetles on Brassicaceae is associated with the evolution of specific detoxification enzymes
Stratification of radiosensitive brain metastases based on an actionable S100A9/RAGE resistance mechanism
Whole-brain radiotherapy (WBRT) is the treatment backbone for many patients with brain metastasis; however, its efficacy in preventing disease progression and the associated toxicity have questioned the clinical impact of this approach and emphasized the need for alternative treatments. Given the limited therapeutic options available for these patients and the poor understanding of the molecular mechanisms underlying the resistance of metastatic lesions to WBRT, we sought to uncover actionable targets and biomarkers that could help to refine patient selection. Through an unbiased analysis of experimental in vivo models of brain metastasis resistant to WBRT, we identified activation of the S100A9–RAGE–NF-κB–JunB pathway in brain metastases as a potential mediator of resistance in this organ. Targeting this pathway genetically or pharmacologically was sufficient to revert the WBRT resistance and increase therapeutic benefits in vivo at lower doses of radiation. In patients with primary melanoma, lung or breast adenocarcinoma developing brain metastasis, endogenous S100A9 levels in brain lesions correlated with clinical response to WBRT and underscored the potential of S100A9 levels in the blood as a noninvasive biomarker. Collectively, we provide a molecular framework to personalize WBRT and improve its efficacy through combination with a radiosensitizer that balances therapeutic benefit and toxicity.We thank all members of the Brain Metastasis Group and A. Chalmers, E. Wagner, O. Fernández-Capetillo, R. Ciérvide and A. Hidalgo for critical discussion of the manuscript; the CNIO Core Facilities for their excellent assistance; and Fox Chase Cancer Center Transgenic Facility for generation of S100A9 mice. We thank EuCOMM repository for providing S100A9 targeted embryonic stem cells. We also thank J. Massagué (MSKCC) for some of the BrM cell lines and M. Bosenberg (Yale) for the YUMM1.1 cell line. Samples from patients included in this study that provided by the Girona Biomedical Research Institute (IDIBGI) (Biobanc IDIBGI, B.0000872) are integrated into the Spanish National Biobanks Network and in the Xarxa de Bancs de Tumors de Catalunya (XBTC) financed by the Pla Director d’Oncologia de Catalunya. All patients consented to the storage of these samples in the biobank and for their use in research projects. This study was funded by MINECO (SAF2017-89643-R) (M.V.), Fundació La Marató de TV3 (201906-30-31-32) (J.B.-B., M.V. and A.C.), Fundación Ramón Areces (CIVP19S8163) (M.V.) and CIVP20S10662 (E.O.P.), Worldwide Cancer Research (19-0177) (M.V. and E.C.-J.M.), Cancer Research Institute (Clinic and Laboratory Integration Program CRI Award 2018 (54545) (M.V.), AECC (Coordinated Translational Groups 2017 (GCTRA16015SEOA) (M.V.), LAB AECC 2019 (LABAE19002VALI) (M.V.), ERC CoG (864759) (M.V.), Portuguese Foundation for Science and Technology (SFRH/bd/100089/2014) (C.M.), Boehringer-Ingelheim Fonds MD Fellowship (L.M.), La Caixa International PhD Program Fellowship-Marie Skłodowska-Curie (LCF/BQ/DI17/11620028) (P.G.-G.), La Caixa INPhINIT Fellowship (LCF/BQ/DI19/11730044) (A.P.-A.), MINECO-Severo Ochoa PhD Fellowship (BES-2017-081995) (L.A.-E.) and an AECC postdoctoral fellowship (POSTD19016PRIE) (N.P.). M.V. is an EMBO YIP member (4053). Additional support was provided by Gertrud and Erich Roggenbuck Stiftung (M.M.), Science Foundation Ireland Frontiers for the Future Award (19/FFP/6443) (L.Y.), Science Foundation Ireland Strategic Partnership Programme, Precision Oncology Ireland (18/SPP/3522) (L.Y.), Breast Cancer Now Fellowship Award with the generous support of Walk the Walk (2019AugSF1310) (D.V.), Science Foundation Ireland (20/FFP-P/8597) (D.V.), Paradifference Foundation (C.F.-T.), “la Caixa” Foundation (ID 100010434) (A.I.), European Union’s Horizon 2020 research and innovation programme under Marie Skłodowska-Curie grant agreement 847648 (CF/BQ/PI20/11760029) (A.I.), Champalimaud Centre for the Unknown (N.S.), Lisboa Regional Operational Programme (Lisboa 2020) (LISBOA01-0145-FEDER-022170) (N.S.), NCI (R01 CA227629; R01 CA218133) (S.I.G.), Fundació Roses Contra el Càncer (J.B.-B.), Ministerio de Universidades FPU Fellowship (FPU 18/00069) (P.T.), MICIN-Agencia Estatal de Investigación Fellowships (PRE2020-093032 and BES-2017-080415) (P.M. and E. Cintado, respectively), Ministerio de Ciencia, Innovación y Universidades-E050251 (PID2019-110292RB-I00) (J.L.T.), FCT (PTDC/MED-ONC/32222/2017) (C.C.F.), Fundação Millennium bcp (C.C.F.), private donations (C.C.F.) and the Foundation for Applied Cancer Research in Zurich (E.L.R. and M.W.)
Hierarchical genetic structure shaped by topography in a narrow-endemic montane grasshopper
[Background]: Understanding the underlying processes shaping spatial patterns of genetic structure in free-ranging
organisms is a central topic in evolutionary biology. Here, we aim to disentangle the relative importance of neutral
(i.e. genetic drift) and local adaptation (i.e. ecological divergence) processes in the evolution of spatial genetic structure of
the Morales grasshopper (Chorthippus saulcyi moralesi), a narrow-endemic taxon restricted to the Central Pyrenees. More
specifically, we analysed range-wide patterns of genetic structure and tested whether they were shaped by geography
(isolation-by-distance, IBD), topographic complexity and present and past habitat suitability models (isolation-byresistance,
IBR), and environmental dissimilarity (isolation-by-environment, IBE).[Results]: Different clustering analyses revealed a deep genetic structure that was best explained by IBR based on
topographic complexity. Our analyses did not reveal a significant role of IBE, a fact that may be due to low environmental
variation among populations and/or consequence of other ecological factors not considered in this study are involved in
local adaptation processes. IBR scenarios informed by current and past climate distribution models did not show either a
significant impact on genetic differentiation after controlling for the effects of topographic complexity, which
may indicate that they are not capturing well microhabitat structure in the present or the genetic signal left by
dispersal routes defined by habitat corridors in the past.[Conclusions]: Overall, these results indicate that spatial patterns of genetic variation in our study system are primarily
explained by neutral divergence and migration-drift equilibrium due to limited dispersal across abrupt reliefs, whereas
environmental variation or spatial heterogeneity in habitat suitability associated with the complex topography of the
region had no significant effect on genetic discontinuities after controlling for geography. Our study highlights the
importance of considering a comprehensive suite of potential isolating mechanisms and analytical approaches in order
to get robust inferences on the processes promoting genetic divergence of natural populations.VN was supported by a FPI pre-doctoral scholarship (BES-2012-053741) from Ministerio de Economía y Competitividad. JO was supported by Severo Ochoa (SEV-2012-0262) and Ramón y Cajal (RYC-2013-12501) research fellowships. This work received financial support from research grants CGL2011-25053 (Ministerio de Ciencia e Innovación and European Social Fund), POII10-0197-0167, PEII-2014-023-P (Junta de Comunidades de Castilla-La Mancha and European Social Fund) and UNCM08-1E-018 (European Regional Development Fund).We acknowledge support of the publication fee by the CSIC Open Access Publication Support Initiative through its Unit of Information Resources for Research (URICI).Peer reviewe
P1.03-035 Efficacy of Nintedanib and Docetaxel in Combination with the Nutraceutical Use of Silibinin in Advanced NSCLC
The importance of threatened host plants for arthropod diversity: the fauna associated with dendroid Euphorbia plants endemic to the Canary and Madeira archipelagos
The impact of hip fracture on health-related quality of life and activities of daily living: the SPARE-HIP prospective cohort study
The impact of hip fracture on health-related quality of life and activities of daily living: the SPARE-HIP prospective cohort study.
The medical morbidity and mortality associated with neck of femur fractures is well-documented, whereas there is limited data for patient-reported outcomes. The aim of this study was to characterize the impact of neck of femur fractures on activities of daily living and patient-reported health-related quality of life. Design and participants: Multicentric prospective cohort study. Consecutive sample patients with fragility hip fracture over 50 years old admitted in 48 hospitals in Spain. daily living activity function (Barthel Index) and health-related quality of life (EQ-5D) pre-fracture, admission to hospital and at 1- and 4-month follow-up post-fracture. Barthel and EQ-5D over time are described as mean (SD) and median (interquartile range). A total of 997 patients were recruited at baseline with 4-month outcomes available for, and 856 patients (89.5%). Barthel Index fell from 78.77 (23.75) at baseline to 43.62 (19.86) on admission to hospital with the fracture. Scores partially recovered to 54.89 (25.40) and 64.09 (21.35) at 1- and 4-month post-fracture, respectively. EQ-5D fell from a median of 0.75 (0.47-0.91) to - 0.01 (- 0.03 to 0.51) on admission. Partial recovery was observed again to (0.51 (- 0.06 to 0.67)) and (0.60 (0.10 to 0.80)) at 1- and 4-month post-fracture, respectively. Hip fracture results in a large decline in the ability to perform activities of daily living and patient-reported health-related quality of life with only partial recovery amongst survivors 4-month post-fracture
Half hip fracture patients are reportedly ‘worse’ than dead as based on health-related quality of life at the time of admission, with partial recovery at 1 and 4-months follow-up: the spare-hip prospective cohort
Objective: To estimate the impact of hip fracture on health-related quality of life (HRQoL) up to 4 months post-fracture
In-hospital care, complications, and 4-month mortality following a hip or proximal femur fracture: the Spanish registry of osteoporotic femur fractures prospective cohort study
Summary We have characterised 997 hip fracture patients from a representative 45 Spanish hospitals, and followed them up prospectively for up to 4 months. Despite suboptimal surgical delays (average 59.1 hours), in-hospital mortality was lower than in Northern European cohorts. The secondary fracture prevention gap is unacceptably high at 85%. Purpose To characterise inpatient care, complications, and 4-month mortality following a hip or proximal femur fracture in Spain. Methods Design: prospective cohort study. Consecutive sample of patients ≥ 50 years old admitted in a representative 45 hospitals for a hip or proximal femur fragility fracture, from June 2014 to June 2016 and followed up for 4 months post-fracture. Patient characteristics, site of fracture, in-patient care (including secondary fracture prevention) and complications, and 4-month mortality are described. Results A total of 997 subjects (765 women) of mean (standard deviation) age 83.6 (8.4) years were included. Previous history of fracture/s (36.9%) and falls (43%) were common, and 10-year FRAX-estimated major and hip fracture risks were 15.2% (9.0%) and 8.5% (7.6%) respectively. Inter-trochanteric (44.6%) and displaced intra-capsular (28.0%) were the most common fracture sites, and fixation with short intramedullary nail (38.6%) with spinal anaesthesia (75.5%) the most common procedures. Surgery and rehabilitation were initiated within a mean 59.1 (56.7) and 61.9 (55.1) hours respectively, and average length of stay was 11.5 (9.3) days. Antithrombotic and antibiotic prophylaxis were given to 99.8% and 98.2% respectively, whilst only 12.4% received secondary fracture prevention at discharge. Common complications included delirium (36.1 %) and kidney failure (14.1%), with in-hospital and 4-month mortality of 2.1% and 11% respectively. Conclusions Despite suboptimal surgical delay, post-hip fracture mortality is low in Spanish hospitals. The secondary fracture prevention gap is unacceptably high at > 85%, in spite of virtually universal anti-thrombotic and antibiotic prophylaxis
Stratification of radiosensitive brain metastases based on an actionable S100A9/RAGE resistance mechanism
Whole-brain radiotherapy (WBRT) is the treatment backbone for many patients with brain metastasis; however, its efficacy in preventing disease progression and the associated toxicity have questioned the clinical impact of this approach and emphasized the need for alternative treatments. Given the limited therapeutic options available for these patients and the poor understanding of the molecular mechanisms underlying the resistance of metastatic lesions to WBRT, we sought to uncover actionable targets and biomarkers that could help to refine patient selection. Through an unbiased analysis of experimental in vivo models of brain metastasis resistant to WBRT, we identified activation of the S100A9-RAGE-NF-κB-JunB pathway in brain metastases as a potential mediator of resistance in this organ. Targeting this pathway genetically or pharmacologically was sufficient to revert the WBRT resistance and increase therapeutic benefits in vivo at lower doses of radiation. In patients with primary melanoma, lung or breast adenocarcinoma developing brain metastasis, endogenous S100A9 levels in brain lesions correlated with clinical response to WBRT and underscored the potential of S100A9 levels in the blood as a noninvasive biomarker. Collectively, we provide a molecular framework to personalize WBRT and improve its efficacy through combination with a radiosensitizer that balances therapeutic benefit and toxicity
