501 research outputs found
The Gaia Mission and the Asteroids. A perspective from space astrometry and photometry for asteroids studies and science.
90 pagesThe Gaia space mission to be operated in early 2012 by the European Space Agency (ESA), will make a huge step in our knowledge of the Sun's neighbor-hood, up to the Magellanic clouds. Somewhat closer, Gaia will also provide ma jor improvements in the science of asteroids, and more generally to our Solar System, either directly or indirectly. Gaia is a scanning survey telescope aimed to perform high accuracy astrometry and photometry. More specifically it will provide physical and dynamical characterization of asteroids, a better knowledge of the solar system composition, formation and evolution, local test of the general relativity, and linking the dynamical reference frame to the kinematical ICRS. We develop here the general aspects of asteroid observations and the scientific harvest in perspective of what was achieved in the pre-Gaia era. In this lecture we focus on the determination of size of asteroids, shape and rotation, taxonomy, orbits and their improvements with historical highlight, and also the dynamical model in general
Imaging sub-milliarcsecond stellar features with intensity interferometry using air Cherenkov telescope arrays
Recent proposals have been advanced to apply imaging air Cherenkov telescope
arrays to stellar intensity interferometry (SII). Of particular interest is the
possibility of model-independent image recovery afforded by the good (u,
v)-plane coverage of these arrays, as well as recent developments in phase
retrieval techniques. The capabilities of these instruments used as SII
receivers have already been explored for simple stellar objects, and here the
focus is on reconstructing stellar images with non-uniform radiance
distributions. We find that hot stars (T > 6000 K) containing hot and/or cool
localized regions (T \sim 500 K) as small as \sim 0.1 mas can be imaged at
short wavelengths ({\lambda} = 400 nm).Comment: Accepted for publication in MNRAS. 6 pages, 10 figure
The catalog of radial velocity standard stars for the Gaia RVS: status and progress of the observations
A new full-sky catalog of Radial Velocity standard stars is being built for
the determination of the Radial Velocity Zero Point of the RVS on board of
Gaia. After a careful selection of 1420 candidates matching well defined
criteria, we are now observing all of them to verify that they are stable
enough over several years to be qualified as reference stars. We present the
status of this long-term observing programme on three spectrographs : SOPHIE,
NARVAL and CORALIE, complemented by the ELODIE and HARPS archives. Because each
instrument has its own zero-point, we observe intensively IAU RV standards and
asteroids to homogenize the radial velocity measurements. We can already
estimate that ~8% of the candidates have to be rejected because of variations
larger than the requested level of 300 m/s.Comment: Proceedings of SF2A2010, S. Boissier, M. Heydari-Malayeri, R. Samadi
and D. Valls-Gabaud (eds), 3 pages, 2 figure
Extreme Kuiper Belt Object 2001 QG298 and the Fraction of Contact Binaries
Extensive time-resolved observations of Kuiper Belt object 2001 QG298 show a
lightcurve with a peak-to-peak variation of 1.14 +-0.04 magnitudes and
single-peaked period of 6.8872 +- 0.0002 hr. The mean absolute magnitude is
6.85 magnitudes which corresponds to a mean effective radius of 122 (77) km if
an albedo of 0.04 (0.10) is assumed. This is the first known Kuiper Belt object
and only the third minor planet with a radius > 25 km to display a lightcurve
with a range in excess of 1 magnitude. We find the colors to be typical for a
Kuiper Belt object (B-V = 1.00 +- 0.04, V-R = 0.60 +- 0.02) with no variation
in color between minimum and maximum light. The large light variation,
relatively long double-peaked period and absence of rotational color change
argue against explanations due to albedo markings or elongation due to high
angular momentum. Instead, we suggest that 2001 QG298 may be a very close or
contact binary similar in structure to what has been independently proposed for
the Trojan asteroid 624 Hektor. If so, its rotational period would be twice the
lightcurve period or 13.7744 +- 0.0004 hr. By correcting for the effects of
projection, we estimate that the fraction of similar objects in the Kuiper Belt
is at least 10% to 20% with the true fraction probably much higher. A high
abundance of close and contact binaries is expected in some scenarios for the
evolution of binary Kuiper Belt objects.Comment: 15 text pages,6 figures(Color),5 Tables, Accepted to AJ for May 200
Taking the opportunity of the Gaia reference star catalogue for observing the Solar system in the past
International audienceThe Gaia astrometric catalogue of reference stars will provide proper motions of stars until mag 18 with an accuracy better than 6 mas over one century. So, we may reduce all astrometric observations of Solar System objects made since the end of the XIXth century with an accuracy better than the present accuracy of the best reference star catalogues such as the UCAC2 or UCAC4. This should solve or considerably reduce the problems of biases in ephemerides because of zonal errors in the catalogues. We performed tests on photographic plates and, thanks to the use of sub-micrometric scanners, we succeeded to improve the reduction of plates made in the 1960's for planetary satellites. Even with an accuracy less than the expected one of the future Gaia catalogue, we show a systematic shift of the ephemerides during the last decades
An integrative approach based on probabilistic modelling and statistical inference for morpho-statistical characterization of astronomical data
This paper describes several applications in astronomy and cosmology that are
addressed using probabilistic modelling and statistical inference
Detecting stars, galaxies, and asteroids with Gaia
(Abridged) Gaia aims to make a 3-dimensional map of 1,000 million stars in
our Milky Way to unravel its kinematical, dynamical, and chemical structure and
evolution. Gaia's on-board detection software discriminates stars from spurious
objects like cosmic rays and Solar protons. For this, parametrised
point-spread-function-shape criteria are used. This study aims to provide an
optimum set of parameters for these filters. We developed an emulation of the
on-board detection software, which has 20 free, so-called rejection parameters
which govern the boundaries between stars on the one hand and sharp or extended
events on the other hand. We evaluate the detection and rejection performance
of the algorithm using catalogues of simulated single stars, double stars,
cosmic rays, Solar protons, unresolved galaxies, and asteroids. We optimised
the rejection parameters, improving - with respect to the functional baseline -
the detection performance of single and double stars, while, at the same time,
improving the rejection performance of cosmic rays and of Solar protons. We
find that the minimum separation to resolve a close, equal-brightness double
star is 0.23 arcsec in the along-scan and 0.70 arcsec in the across-scan
direction, independent of the brightness of the primary. We find that, whereas
the optimised rejection parameters have no significant impact on the
detectability of de Vaucouleurs profiles, they do significantly improve the
detection of exponential-disk profiles. We also find that the optimised
rejection parameters provide detection gains for asteroids fainter than 20 mag
and for fast-moving near-Earth objects fainter than 18 mag, albeit this gain
comes at the expense of a modest detection-probability loss for bright,
fast-moving near-Earth objects. The major side effect of the optimised
parameters is that spurious ghosts in the wings of bright stars essentially
pass unfiltered.Comment: Accepted for publication in A&
Formes d'astéroïdes et formation de satellites : rôle de la réaccumulation gravitationnelle
International audienceAsteroid shapes and satellites: role of gravitational reaccumulation. Following current evidences, it is widely accepted that many asteroids would be "gravitational aggregates", i.e. bodies lacking internal cohesion. They could mainly be originated during the catastrophic disruption of some parent bodies, through the gravitational reaccumulation of the resulting fragments. The same events produced the dynamical families that we observe. In this work we address the problem of the origin of shapes of gravitational aggregates, that could contain signatures of their origin. We use a N-body code to simulate the collapse of a cloud of fragments, with a variety of initial velocity distributions and total angular momentum. The fragments are treated as inhelastic spheres, that rapidly accumulate to form rotating aggregates. The resulting shapes and rotational properties are compared with theoretical predictions. The results show that only a precise category of shapes (flattened spheroids) are created via this mechanism. This may provide interesting constraints on the evolution of asteroid shapes, in particular for those with one or more satellites
Extended envelopes around Galactic Cepheids III. Y Oph and alpha Per from near-infrared interferometry with CHARA/FLUOR
Unbiased angular diameter measurements are required for accurate distances to
Cepheids using the interferometric Baade Wesselink method (IBWM). The precision
of this technique is currently limited by interferometric measurements at the
1.5% level. At this level, the center-to-limb darkening (CLD) and the presence
of circumstellar envelopes (CSE) seem to be the two main sources of bias. The
observations we performed aim at improving our knowledge of the interferometric
visibility profile of Cepheids. In particular, we assess the systematic
presence of CSE around Cepheids in order determine accurate distances with the
IBWM free from CSE biased angular diameters. We observed a Cepheid (Y Oph) for
which the pulsation is well resolved and a non-pulsating yellow supergiant
(alpha Per) using long-baseline near-infrared interferometry. We interpreted
these data using a simple CSE model we previously developed. We found that our
observations of alpha Per do not provide evidence for a CSE. The measured CLD
is explained by an hydrostatic photospheric model. Our observations of Y Oph,
when compared to smaller baseline measurements, suggest that it is surrounded
by a CSE with similar characteristics to CSE found previously around other
Cepheids. We have determined the distance to Y Oph to be d=491+/-18 pc.
Additional evidence points toward the conclusion that most Cepheids are
surrounded by faint CSE, detected by near infrared interferometry: after
observing four Cepheids, all show evidence for a CSE. Our CSE non-detection
around a non-pulsating supergiant in the instability strip, alpha Per, provides
confidence in the detection technique and suggests a pulsation driven mass-loss
mechanism for the Cepheids.Comment: accepted for publication in Ap
- …
