3,993 research outputs found

    The cationic energy landscape in alkali silicate glasses: properties and relevance

    Full text link
    Individual cationic site--energies are explicitly determined from molecular dynamics simulations of alkali silicate glasses, and the properties and relevance of this local energetics to ion transport are studied. The absence of relaxations on the timescale of ion transport proves the validity of a static description of the energy landscape, as it is generally used in hopping models. The Coulomb interaction among the cations turns out essential to obtain an average energy landscape in agreement with typical simplified hopping models. Strong correlations exist both between neighboring sites and between different energetic contributions at one site, and they shape essential characteristics of the energy landscape. A model energy landscape with a single vacancy is used to demonstrate why average site--energies, including the full Coulomb interaction, are still insufficient to describe the site population of ions, or their dynamics. This model explains how the relationship between energetics and ion dynamics is weakened, and thus establishes conclusively that a hopping picture with static energies fails to capture all the relevant information. It is therefore suggested that alternative simplified models of ion conduction are needed.Comment: 19 pages, 1 table, 7 figures; submitted to JC

    Characterization of the complex ion dynamics in lithium silicate glasses via computer simulations

    Full text link
    We present results of molecular dynamics simulations on lithium metasilicate over a broad range of temperatures for which the silicate network is frozen in but the lithium ions can still be equilibrated. The lithium dynamics is studied via the analysis of different correlation functions. The activation energy for the lithium mobility agrees very well with experimental data. The correlation of the dynamics of adjacent ions is weak. At low temperatures the dynamics can be separated into local vibrational dynamics and hopping events between adjacent lithium sites. The derivative of the mean square displacement displays several characteristic time regimes. They can be directly mapped onto respective frequency regimes for the conductivity. In particular it is possible to identify time regimes dominated by localized dynamics and long-range dynamics, respectively. The question of time-temperature superposition is discussed for the mean square displacement and the incoherent scattering function.Comment: to be published in Phys. Chem. Chem. Phy

    Contributions to the mixed-alkali effect in molecular dynamics simulations of alkali silicate glasses

    Full text link
    The mixed-alkali effect on the cation dynamics in silicate glasses is analyzed via molecular dynamics simulations. Observations suggest a description of the dynamics in terms of stable sites mostly specific to one ionic species. As main contributions to the mixed--alkali slowdown longer residence times and an increased probability of correlated backjumps are identified. The slowdown is related to the limited accessibility of foreign sites. The mismatch experienced in a foreign site is stronger and more retarding for the larger ions, the smaller ions can be temporarily accommodated. Also correlations between unlike as well as like cations are demonstrated that support cooperative behavior.Comment: 10 pages, 12 figures, 1 table, revtex4, submitted to Phys. Rev.

    Deep-Elastic pp Scattering at LHC from Low-x Gluons

    Full text link
    Deep-elastic pp scattering at c.m. energy 14 TeV at LHC in the momentum transfer range 4 GeV*2 < |t| < 10 GeV*2 is planned to be measured by the TOTEM group. We study this process in a model where the deep-elastic scattering is due to a single hard collision of a valence quark from one proton with a valence quark from the other proton. The hard collision originates from the low-x gluon cloud around one valence quark interacting with that of the other. The low-x gluon cloud can be identified as color glass condensate and has size ~0.3 F. Our prediction is that pp differential cross section in the large |t| region decreases smoothly as momentum transfer increases. This is in contrast to the prediction of pp differential cross section with visible oscillations and smaller cross sections by a large number of other models.Comment: 10 pages, including 4 figure

    A Simple Non-Markovian Computational Model of the Statistics of Soccer Leagues: Emergence and Scaling effects

    Full text link
    We propose a novel algorithm that outputs the final standings of a soccer league, based on a simple dynamics that mimics a soccer tournament. In our model, a team is created with a defined potential(ability) which is updated during the tournament according to the results of previous games. The updated potential modifies a teams' future winning/losing probabilities. We show that this evolutionary game is able to reproduce the statistical properties of final standings of actual editions of the Brazilian tournament (Brasileir\~{a}o). However, other leagues such as the Italian and the Spanish tournaments have notoriously non-Gaussian traces and cannot be straightforwardly reproduced by this evolutionary non-Markovian model. A complete understanding of these phenomena deserves much more attention, but we suggest a simple explanation based on data collected in Brazil: Here several teams were crowned champion in previous editions corroborating that the champion typically emerges from random fluctuations that partly preserves the gaussian traces during the tournament. On the other hand, in the Italian and Spanish leagues only a few teams in recent history have won their league tournaments. These leagues are based on more robust and hierarchical structures established even before the beginning of the tournament. For the sake of completeness, we also elaborate a totally Gaussian model (which equalizes the winning, drawing, and losing probabilities) and we show that the scores of the "Brasileir\~{a}o" cannot be reproduced. Such aspects stress that evolutionary aspects are not superfluous in our modeling. Finally, we analyse the distortions of our model in situations where a large number of teams is considered, showing the existence of a transition from a single to a double peaked histogram of the final classification scores. An interesting scaling is presented for different sized tournaments.Comment: 18 pages, 9 figure

    Association of a MET genetic variant with autism-associated maternal autoantibodies to fetal brain proteins and cytokine expression.

    Get PDF
    The contribution of peripheral immunity to autism spectrum disorders (ASDs) risk is debated and poorly understood. Some mothers of children with ASD have autoantibodies that react to fetal brain proteins, raising the possibility that a subset of ASD cases may be associated with a maternal antibody response during gestation. The mechanism by which the maternal immune system breaks tolerance has not been addressed. We hypothesized that the mechanism may involve decreased expression of the MET receptor tyrosine kinase, an ASD risk gene that also serves as a key negative regulator of immune responsiveness. In a sample of 365 mothers, including 202 mothers of children with ASD, the functional MET promoter variant rs1858830 C allele was strongly associated with the presence of an ASD-specific 37+73-kDa band pattern of maternal autoantibodies to fetal brain proteins (P=0.003). To determine the mechanism of this genetic association, we measured MET protein and cytokine production in freshly prepared peripheral blood mononuclear cells from 76 mothers of ASD and typically developing children. The MET rs1858830 C allele was significantly associated with MET protein expression (P=0.025). Moreover, decreased expression of the regulatory cytokine IL-10 was associated with both the MET gene C allele (P=0.001) and reduced MET protein levels (P=0.002). These results indicate genetic distinction among mothers who produce ASD-associated antibodies to fetal brain proteins, and suggest a potential mechanism for how a genetically determined decrease in MET protein production may lead to a reduction in immune regulation

    Electron-Positron colliders

    Get PDF
    An electron-positron linear collider in the energy range between 500 and 1000 GeV is of crucial importance to precisely test the Standard Model and to explore the physics beyond it. The physics program is complementary to that of the Large Hadron Collider. Some of the main physics goals and the expected accuracies of the anticipated measurements at such a linear collider are discussed. A short review of the different collider designs presently under study is given including possible upgrade paths to the multi-TeV region. Finally a framework is presented within which the realisation of such a project could be achieved as a global international project.Comment: 14 pages, 16 figures, Proceedings of the XX International Symposium on Lepton and Photon Interactions at High Energies, Rome, Italy, 23-28 July, 200

    Fast vectorized algorithm for the Monte Carlo Simulation of the Random Field Ising Model

    Full text link
    An algoritm for the simulation of the 3--dimensional random field Ising model with a binary distribution of the random fields is presented. It uses multi-spin coding and simulates 64 physically different systems simultaneously. On one processor of a Cray YMP it reaches a speed of 184 Million spin updates per second. For smaller field strength we present a version of the algorithm that can perform 242 Million spin updates per second on the same machine.Comment: 13 pp., HLRZ 53/9

    Particle rearrangements during transitions between local minima of the potential energy landscape of a supercooled Lennard-Jones liquid

    Full text link
    The potential energy landscape (PEL) of supercooled binary Lennard-Jones (BLJ) mixtures exhibits local minima, or inherent structures (IS), which are organized into meta-basins (MB). We study the particle rearrangements related to transitions between both successive IS and successive MB for a small 80:20 BLJ system near the mode-coupling temperature T_MCT. The analysis includes the displacements of individual particles, the localization of the rearrangements and the relevance of string-like motion. We find that the particle rearrangements during IS and MB transitions do not change significantly at T_MCT. Further, it is demonstrated that IS and MB dynamics are spatially heterogeneous and facilitated by string-like motion. To investigate the mechanism of string-like motion, we follow the particle rearrangements during suitable sequences of IS transitions. We find that most strings observed after a series of transitions do not move coherently during a single transition, but subunits of different sizes are active at different times. Several findings suggest that the occurrence of a successful string enables the system to exit a MB. Moreover, we show that the particle rearrangements during two consecutive MB transitions are basically uncorrelated. Specifically, different groups of particles are highly mobile during subsequent MB transitions. Finally, the relation between the features of the PEL and the relaxation processes in supercooled liquids is discussed.Comment: 13 pages, 10 figure
    corecore