420 research outputs found
The Gaussian Plasma Lens in Astrophysics. Refraction
We consider the geometrical optics for refraction of a distant radio source
by an interstellar plasma lens, with application to a lens with a Gaussian
electron column density profile. The refractive properties of the lens are
specified completely by a dimensionless parameter, alpha, which is a function
of the wavelength of observation, the lens' electron column density, the
lens-observer distance, and the transverse diameter of the lens. Relative
motion of the observer and lens produces modulations in the source's light
curve. Plasma lenses are diverging so the light curve displays a minimum, when
the lens is on-axis, surrounded by enhancements above the unlensed flux
density. Lensing can also produce caustics, multiple imaging, and angular
position wander of the background source. If caustics are formed, the
separation of the outer caustics can constrain alpha, while the separation of
the inner caustics can constrain the size of the lens. We apply our analysis to
0954+654, a source for which we can identify caustics in its light curve, and
1741-038, for which polarization observations were obtained during and after
the scattering event. We find general agreement between modelled and observed
light curves at 2.25 GHz, but poor agreement at 8.1 GHz. The discrepancies may
result from a combination of lens substructure or anisotropic shape, a lens
that only grazes the source, or unresolved source substructure. Our analysis
places the following constraints on the lenses: Toward 0954+654 (1741-038) the
lens was 0.38 AU (0.065 AU) in diameter, with a peak column density of 0.24 pc
cm^{-3} (1E-4 pc cm^{-3}) and an electron density of 1E5 cm^{-3} (300 cm^{-3}).
The angular wander caused by the lens was 250 mas (0.4 mas) at 2.25 GHz. For
1741-038, we place an upper limit of 100 mG on the lens' magnetic field.Comment: 26 pages, LaTeX2e using AASTeX macro aaspp4, 11 PostScript figures;
to be published in Ap
Simultaneous Absolute Timing of the Crab Pulsar at Radio and Optical Wavelengths
The Crab pulsar emits across a large part of the electromagnetic spectrum.
Determining the time delay between the emission at different wavelengths will
allow to better constrain the site and mechanism of the emission. We have
simultaneously observed the Crab Pulsar in the optical with S-Cam, an
instrument based on Superconducting Tunneling Junctions (STJs) with s time
resolution and at 2 GHz using the Nan\c{c}ay radio telescope with an instrument
doing coherent dedispersion and able to record giant pulses data. We have
studied the delay between the radio and optical pulse using simultaneously
obtained data therefore reducing possible uncertainties present in previous
observations. We determined the arrival times of the (mean) optical and radio
pulse and compared them using the tempo2 software package. We present the most
accurate value for the optical-radio lag of 255 21 s and suggest the
likelihood of a spectral dependence to the excess optical emission asociated
with giant radio pulses.Comment: 8 pages; accepted for publication in Astronomy and Astrophysic
Electric field representation of pulsar intensity spectra
Pulsar dynamic spectra exhibit high visibility fringes arising from
interference between scattered radio waves. These fringes may be random or
highly ordered patterns, depending on the nature of the scattering or
refraction. Here we consider the possibility of decomposing pulsar dynamic
spectra -- which are intensity measurements -- into their constituent scattered
waves, i.e. electric field components. We describe an iterative method of
achieving this decomposition and show how the algorithm performs on data from
the pulsar B0834+06. The match between model and observations is good, although
not formally acceptable as a representation of the data. Scattered wave
components derived in this way are immediately useful for qualitative insights
into the scattering geometry. With some further development this approach can
be put to a variety of uses, including: imaging the scattering and refracting
structures in the interstellar medium; interstellar interferometric imaging of
pulsars at very high angular resolution; and mitigating pulse arrival time
fluctuations due to interstellar scattering.Comment: 7 Pages, 2 Figures, revised version, accepted by MNRA
Why the braking indices of young pulsars are less than 3?
In this letter we discuss two possible reasons which cause the observed
braking indices n of young radio pulsars to be smaller than 3: (a) the evolving
spin-down model of the magnetic field component increases with
time; (b) the extrinsic braking torque model in which the tidal torques exerted
on the pulsar by the fallback disk, and carries away the spin angular momentum
from the pulsar. Based on some simple assumptions, we derive the expression of
the braking indices, and calculate the spin-down evolutionary tracks of pulsars
for different input parameters.Comment: 4 pages, 3 figures, accepted for publication in A&A Letter
Neutron star composition in strong magnetic fields
We study the problem of neutron star composition in the presence of a strong
magnetic field. The effects of the anomalous magnetic moments of both nucleons
and electrons are investigated in relativistic mean field calculations for a
-equilibrium system. Since neutrons are fully spin polarized in a large
field, generally speaking, the proton fraction can never exceed the field free
case. An extremely strong magnetic field may lead to a pure neutron matter
instead of a proton-rich matter.Comment: 12 pages, 3 postscript files include
Resolving the Radio Source Background: Deeper Understanding Through Confusion
We used the Karl G. Jansky Very Large Array (VLA) to image one primary beam
area at 3 GHz with 8 arcsec FWHM resolution and 1.0 microJy/beam rms noise near
the pointing center. The P(D) distribution from the central 10 arcmin of this
confusion-limited image constrains the count of discrete sources in the 1 <
S(microJy/beam) < 10 range. At this level the brightness-weighted differential
count S^2 n(S) is converging rapidly, as predicted by evolutionary models in
which the faintest radio sources are star-forming galaxies; and ~96$% of the
background originating in galaxies has been resolved into discrete sources.
About 63% of the radio background is produced by AGNs, and the remaining 37%
comes from star-forming galaxies that obey the far-infrared (FIR) / radio
correlation and account for most of the FIR background at lambda = 160 microns.
Our new data confirm that radio sources powered by AGNs and star formation
evolve at about the same rate, a result consistent with AGN feedback and the
rough correlation of black hole and bulge stellar masses. The confusion at
centimeter wavelengths is low enough that neither the planned SKA nor its
pathfinder ASKAP EMU survey should be confusion limited, and the ultimate
source detection limit imposed by "natural" confusion is < 0.01 microJy at 1.4
GHz. If discrete sources dominate the bright extragalactic background reported
by ARCADE2 at 3.3 GHz, they cannot be located in or near galaxies and most are
< 0.03 microJy at 1.4 GHz.Comment: 28 pages including 16 figures. ApJ accepted for publicatio
The influence of nondipolar magnetic field and neutron star precession on braking indexes of radiopulsars
Some of radiopulsars have anomalous braking index values . It is shown that
such values may be related with nondipolar magnetic field. The precession of
neutron star lead to rotation (in reference frame related with neutron star) of
vector of angular velocity along direction of neutron star
magnetic dipole moment with angular velocity . This
process may cause the altering of electric current flow through inner gap and
consequently the current losses with the same time scale as precession period
. It occurs because of electric current in inner
gaps is determined by Goldreich-Julian charge density , which are depend on angle between
direction of small scale magnetic field and angular velocity . It
is essential that pulsar tubes nearby neutron star surface are curved. In
current paper it is considered the only inner gaps with steady, electron charge
limited flow regime.Comment: 11 pages, 17 figure
The High Time Resolution Universe Pulsar Survey I: System configuration and initial discoveries
We have embarked on a survey for pulsars and fast transients using the
13-beam Multibeam receiver on the Parkes radio telescope. Installation of a
digital backend allows us to record 400 MHz of bandwidth for each beam, split
into 1024 channels and sampled every 64 us. Limits of the receiver package
restrict us to a 340 MHz observing band centred at 1352 MHz. The factor of
eight improvement in frequency resolution over previous multibeam surveys
allows us to probe deeper into the Galactic plane for short duration signals
such as the pulses from millisecond pulsars. We plan to survey the entire
southern sky in 42641 pointings, split into low, mid and high Galactic latitude
regions, with integration times of 4200, 540 and 270 s respectively.
Simulations suggest that we will discover 400 pulsars, of which 75 will be
millisecond pulsars. With ~30% of the mid-latitude survey complete, we have
re-detected 223 previously known pulsars and discovered 27 pulsars, 5 of which
are millisecond pulsars. The newly discovered millisecond pulsars tend to have
larger dispersion measures than those discovered in previous surveys, as
expected from the improved time and frequency resolution of our instrument.Comment: Updated author list. 10 pages, 7 figures. For publication in MNRA
External Electromagnetic Fields of a Slowly Rotating Magnetized Star with Gravitomagnetic Charge
We study Maxwell equations in the external background spacetime of a slowly
rotating magnetized NUT star and find analytical solutions for the exterior
electric fields after separating the equations of electric field into angular
and radial parts in the lowest order approximation. The star is considered
isolated and in vacuum, with dipolar magnetic field aligned with the axis of
rotation. The contribution to the external electric field of star from the NUT
charge is considered in detail.Comment: 6 pages, 2 figures, accepted for publication in Astrophysics and
Space Scienc
The Interstellar Environment of our Galaxy
We review the current knowledge and understanding of the interstellar medium
of our galaxy. We first present each of the three basic constituents - ordinary
matter, cosmic rays, and magnetic fields - of the interstellar medium, laying
emphasis on their physical and chemical properties inferred from a broad range
of observations. We then position the different interstellar constituents, both
with respect to each other and with respect to stars, within the general
galactic ecosystem.Comment: 39 pages, 12 figures (including 3 figures in 2 parts
- …
