892 research outputs found

    Asymptotic description of solutions of the exterior Navier Stokes problem in a half space

    Full text link
    We consider the problem of a body moving within an incompressible fluid at constant speed parallel to a wall, in an otherwise unbounded domain. This situation is modeled by the incompressible Navier-Stokes equations in an exterior domain in a half space, with appropriate boundary conditions on the wall, the body, and at infinity. We focus on the case where the size of the body is small. We prove in a very general setup that the solution of this problem is unique and we compute a sharp decay rate of the solution far from the moving body and the wall

    Mean exit time for surface-mediated diffusion: spectral analysis and asymptotic behavior

    Full text link
    We consider a model of surface-mediated diffusion with alternating phases of pure bulk and surface diffusion. For this process, we compute the mean exit time from a disk through a hole on the circle. We develop a spectral approach to this escape problem in which the mean exit time is explicitly expressed through the eigenvalues of the related self-adjoint operator. This representation is particularly well suited to investigate the asymptotic behavior of the mean exit time in the limit of large desorption rate λ\lambda. For a point-like target, we show that the mean exit time diverges as λ\sqrt{\lambda}. For extended targets, we establish the asymptotic approach to a finite limit. In both cases, the mean exit time is shown to asymptotically increase as λ\lambda tends to infinity. We also revise the optimality regime of surface-mediated diffusion. Although the presentation is limited to the unit disk, the spectral approach can be extended to other domains such as rectangles or spheres.Comment: 21 pages, 7 figure

    Existence of global strong solutions to a beam-fluid interaction system

    Get PDF
    We study an unsteady non linear fluid-structure interaction problem which is a simplified model to describe blood flow through viscoleastic arteries. We consider a Newtonian incompressible two-dimensional flow described by the Navier-Stokes equations set in an unknown domain depending on the displacement of a structure, which itself satisfies a linear viscoelastic beam equation. The fluid and the structure are fully coupled via interface conditions prescribing the continuity of the velocities at the fluid-structure interface and the action-reaction principle. We prove that strong solutions to this problem are global-in-time. We obtain in particular that contact between the viscoleastic wall and the bottom of the fluid cavity does not occur in finite time. To our knowledge, this is the first occurrence of a no-contact result, but also of existence of strong solutions globally in time, in the frame of interactions between a viscous fluid and a deformable structure

    On discretization in time in simulations of particulate flows

    Full text link
    We propose a time discretization scheme for a class of ordinary differential equations arising in simulations of fluid/particle flows. The scheme is intended to work robustly in the lubrication regime when the distance between two particles immersed in the fluid or between a particle and the wall tends to zero. The idea consists in introducing a small threshold for the particle-wall distance below which the real trajectory of the particle is replaced by an approximated one where the distance is kept equal to the threshold value. The error of this approximation is estimated both theoretically and by numerical experiments. Our time marching scheme can be easily incorporated into a full simulation method where the velocity of the fluid is obtained by a numerical solution to Stokes or Navier-Stokes equations. We also provide a derivation of the asymptotic expansion for the lubrication force (used in our numerical experiments) acting on a disk immersed in a Newtonian fluid and approaching the wall. The method of this derivation is new and can be easily adapted to other cases

    Probabilistic analysis of the upwind scheme for transport

    Full text link
    We provide a probabilistic analysis of the upwind scheme for multi-dimensional transport equations. We associate a Markov chain with the numerical scheme and then obtain a backward representation formula of Kolmogorov type for the numerical solution. We then understand that the error induced by the scheme is governed by the fluctuations of the Markov chain around the characteristics of the flow. We show, in various situations, that the fluctuations are of diffusive type. As a by-product, we prove that the scheme is of order 1/2 for an initial datum in BV and of order 1/2-a, for all a>0, for a Lipschitz continuous initial datum. Our analysis provides a new interpretation of the numerical diffusion phenomenon

    TOPLHA: an accurate and efficient numerical tool for analysis and design of LH antennas

    Get PDF
    This paper presents a self-consistent, integral-equation approach for the analysis of plasma-facing lower hybrid (LH) launchers; the geometry of the waveguide grill structure can be completely arbitrary, including the non-planar mouth of the grill. This work is based on the theoretical approach and code implementation of the TOPICA code, of which it shares the modular structure and constitutes the extension into the LH range. Code results are validated against the literature results and simulations from similar code
    corecore