3,684 research outputs found

    A novel method for subjective picture quality assessment and further studies of HDTV formats

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ IEEE 2008.This paper proposes a novel method for the assessment of picture quality, called triple stimulus continuous evaluation scale (TSCES), to allow the direct comparison of different HDTV formats. The method uses an upper picture quality anchor and a lower picture quality anchor with defined impairments. The HDTV format under test is evaluated in a subjective comparison with the upper and lower anchors. The method utilizes three displays in a particular vertical arrangement. In an initial series of tests with the novel method, the HDTV formats 1080p/50,1080i/25, and 720p/50 were compared at various bit-rates and with seven different content types on three identical 1920 times 1080 pixel displays. It was found that the new method provided stable and consistent results. The method was tested with 1080p/50,1080i/25, and 720p/50 HDTV images that had been coded with H.264/AVC High profile. The result of the assessment was that the progressive HDTV formats found higher appreciation by the assessors than the interlaced HDTV format. A system chain proposal is given for future media production and delivery to take advantage of this outcome. Recommendations for future research conclude the paper

    Spitzer Observations of Cold Dust Galaxies

    Full text link
    We combine new Spitzer Space Telescope observations in the mid- and far-infrared with SCUBA 850 micron observations to improve the measurement of dust temperatures, masses and luminosities for 11 galaxies of the SCUBA Local Universe Galaxy Survey (SLUGS). By fitting dust models we measure typical dust masses of 10E7.9 M_sol and dust luminosities of ~ 10E10 L_sol, for galaxies with modest star formation rates. The data presented in this paper combined with previous observations show that cold dust is present in all types of spiral galaxies and is a major contributor to their total luminosity. Because of the lower dust temperature of the SCUBA sources measured in this paper, they have flatter Far-IR nu F_nu(160um)/nu F_nu(850um) slopes than the larger Spitzer Nearby Galaxies Survey (SINGS), the sample that provides the best measurements of the dust properties of galaxies in the nearby universe. The new data presented here added to SINGS extend the parameter space that is well covered by local galaxies, providing a comprehensive set of templates that can be used to interpret the observations of nearby and distant galaxies.Comment: Accepted by A.J. 16 pages, 10 figures, 7 tables. High resolution version at http://mips.as.arizona.edu/~cnaw/slugs_hires.pd

    The Structure of the {\beta} Leonis Debris Disk

    Get PDF
    We combine nulling interferometry at 10 {\mu}m using the MMT and Keck Telescopes with spectroscopy, imaging, and photometry from 3 to 100 {\mu}m using Spitzer to study the debris disk around {\beta} Leo over a broad range of spatial scales, corresponding to radii of 0.1 to ~100 AU. We have also measured the close binary star o Leo with both Keck and MMT interferometers to verify our procedures with these instruments. The {\beta} Leo debris system has a complex structure: 1.) relatively little material within 1 AU; 2.) an inner component with a color temperature of ~600 K, fitted by a dusty ring from about 2 to 3 AU; and 3.) a second component with a color temperature of ~120 K fitted by a broad dusty emission zone extending from about ~5 AU to ~55 AU. Unlike many other A-type stars with debris disks, {\beta} Leo lacks a dominant outer belt near 100 AU.Comment: 14 page body, 3 page appendix, 15 figure

    Teaching old NCATs new tricks: using non-canonical amino acid tagging to study neuronal plasticity

    Get PDF
    The non-canonical amino acid labeling techniques BONCAT (bioorthogonal non-canonical amino acid tagging) and FUNCAT (fluorescent non-canonical amino acid tagging) enable the specific identification and visualization of newly synthesized proteins. Recently, these techniques have been applied to neuronal systems to elucidate protein synthesis dynamics during plasticity, identify stimulation-induced proteomes and subproteomes and to investigate local protein synthesis in specific subcellular compartments. The next generation of tools and applications, reviewed here, includes the development of new tags, the quantitative identification of newly synthesized proteins, the application of NCAT to whole animals, and the ability to genetically restrict NCAT labeling. These techniques will enable not only improved detection but also allow new scientific questions to be tackled

    Simultaneous Water Vapor and Dry Air Optical Path Length Measurements and Compensation with the Large Binocular Telescope Interferometer

    Get PDF
    The Large Binocular Telescope Interferometer uses a near-infrared camera to measure the optical path length variations between the two AO-corrected apertures and provide high-angular resolution observations for all its science channels (1.5-13 μ\mum). There is however a wavelength dependent component to the atmospheric turbulence, which can introduce optical path length errors when observing at a wavelength different from that of the fringe sensing camera. Water vapor in particular is highly dispersive and its effect must be taken into account for high-precision infrared interferometric observations as described previously for VLTI/MIDI or the Keck Interferometer Nuller. In this paper, we describe the new sensing approach that has been developed at the LBT to measure and monitor the optical path length fluctuations due to dry air and water vapor separately. After reviewing the current performance of the system for dry air seeing compensation, we present simultaneous H-, K-, and N-band observations that illustrate the feasibility of our feedforward approach to stabilize the path length fluctuations seen by the LBTI nuller.Comment: SPIE conference proceeding
    corecore