5,816 research outputs found

    Retrieval of target structure information from laser-induced photoelectrons by few-cycle bicircular laser fields

    Get PDF
    Citation: Hoang, V. H., Le, V. H., Lin, C. D., & Le, A. T. (2017). Retrieval of target structure information from laser-induced photoelectrons by few-cycle bicircular laser fields. Physical Review A, 95(3), 6. doi:10.1103/PhysRevA.95.031402By analyzing theoretical results from a numerical solution of the time-dependent Schrodinger equation for atoms in few-cycle bicircular laser pulses, we show that high-energy photoelectron momentum spectra can be used to extract accurate elastic scattering differential cross sections of the target ion with free electrons. We find that the retrieval range for a scattering angle with bicircular pulses is wider than with linearly polarized pulses, although the retrieval method has to be modified to account for different returning directions of the electron in the continuum. This result can be used to extend the range of applicability of ultrafast imaging techniques such as laser-induced electron diffraction and for the accurate characterization of laser pulses

    Retrieval of interatomic separations of molecules from laser-induced high-order harmonic spectra

    Full text link
    We illustrate an iterative method for retrieving the internuclear separations of N2_2, O2_2 and CO2_2 molecules using the high-order harmonics generated from these molecules by intense infrared laser pulses. We show that accurate results can be retrieved with a small set of harmonics and with one or few alignment angles of the molecules. For linear molecules the internuclear separations can also be retrieved from harmonics generated using isotropically distributed molecules. By extracting the transition dipole moment from the high-order harmonic spectra, we further demonstrated that it is preferable to retrieve the interatomic separation iteratively by fitting the extracted dipole moment. Our results show that time-resolved chemical imaging of molecules using infrared laser pulses with femtosecond temporal resolutions is possible.Comment: 14 pages, 9 figure

    Theoretical analysis of dynamic chemical imaging with lasers using high-order harmonic generation

    Get PDF
    We report theoretical investigations of the tomographic procedure suggested by Itatani {\it et al.} [Nature, {\bf 432} 867 (2004)] for reconstructing highest occupied molecular orbitals (HOMO) using high-order harmonic generation (HHG). Using the limited range of harmonics from the plateau region, we found that under the most favorable assumptions, it is still very difficult to obtain accurate HOMO wavefunction, but the symmetry of the HOMO and the internuclear separation between the atoms can be accurately extracted, especially when lasers of longer wavelengths are used to generate the HHG. We also considered the possible removal or relaxation of the approximations used in the tomographic method in actual applications. We suggest that for chemical imaging, in the future it is better to use an iterative method to locate the positions of atoms in the molecule such that the resulting HHG best fits the macroscopic HHG data, rather than by the tomographic method.Comment: 13 pages, 14 figure

    Deep LOFAR observations of the merging galaxy cluster CIZA J2242.8+5301

    Get PDF
    Previous studies have shown that CIZA J2242.8+5301 (the 'Sausage' cluster, z = 0.192) is a massive merging galaxy cluster that hosts a radio halo and multiple relics. In this paper, we present deep, high-fidelity, low-frequency images made with the LOw-Frequency Array (LOFAR) between 115.5 and 179 MHz. These images, with a noise of 140 μJy beam- 1 and a resolution of θbeam = 7.3 arcsec × 5.3 arcsec, are an order of magnitude more sensitive and five times higher resolution than previous low-frequency images of this cluster. We combined the LOFAR data with the existing Giant Metrewave Radio Telescope (GMRT) (153, 323, 608 MHz) and Westerbork Synthesis Radio Telescope (WSRT) (1.2, 1.4, 1.7, 2.3 GHz) data to study the spectral properties of the radio emission from the cluster. Assuming diffusive shock acceleration (DSA), we found Mach numbers of Mn=2.7{}_{-0.3}^{+0.6} and Ms=1.9_{-0.2}^{+0.3} for the northern and southern shocks. The derived Mach number for the northern shock requires an acceleration efficiency of several percent to accelerate electrons from the thermal pool, which is challenging for DSA. Using the radio data, we characterized the eastern relic as a shock wave propagating outwards with a Mach number of Me=2.4_{-0.3}^{+0.5}, which is in agreement with MeX=2.5{}_{-0.2}^{+0.6} that we derived from Suzaku data. The eastern shock is likely to be associated with the major cluster merger. The radio halo was measured with a flux of 346 ± 64 mJy at 145 MHz. Across the halo, we observed a spectral index that remains approximately constant (α ^{145 MHz-2.3 GHz}_{{across ˜ 1 Mpc}^2}=-1.01± 0.10) after the steepening in the post-shock region of the northern relic. This suggests a generation of post-shock turbulence that re-energies aged electrons

    Wigner-Seitz cells in neutron star crust with finite range interactions

    Full text link
    The structure of Wigner-Seitz cells in the inner crust of neutron stars is investigated using a microcospic Hartree-Fock-BCS approach with finite range D1S and M3Y-P4 interactions. Large effects on the densities are found compared to previous predictions using Skyrme interactions. Pairing effects are found to be small, and they are attenuated by the use of finite range interactions in the mean field.Comment: 11 pages, 5 figure

    Nonlinear AC resistivity in s-wave and d-wave disordered granular superconductors

    Full text link
    We model s-wave and d-wave disordered granular superconductors with a three-dimensional lattice of randomly distributed Josephson junctions with finite self-inductance. The nonlinear ac resistivity of these systems was calculated using Langevin dynamical equations. The current amplitude dependence of the nonlinear resistivity at the peak position is found to be a power law characterized by exponent α\alpha. The later is not universal but depends on the self-inductance and current regimes. In the weak current regime α\alpha is independent of the self-inductance and equal to 0.5 or both of s- and d-wave materials. In the strong current regime this exponent depends on the screening. We find α1\alpha \approx 1 for some interval of inductance which agrees with the experimental finding for d-wave ceramic superconductors.Comment: 4 pages, 5 figures, to appear in Phys. Rev. Let

    Radio observations of the double-relic galaxy cluster Abell 1240

    Get PDF
    We present LOFAR 120 − 168 MHz images of the merging galaxy cluster Abell 1240 that hosts double radio relics. In combination with the GMRT 595 − 629 MHz and VLA 2 − 4 GHz data, we characterised the spectral and polarimetric properties of the radio emission. The spectral indices for the relics steepen from their outer edges towards the cluster centre and the electric field vectors are approximately perpendicular to the major axes of the relics. The results are consistent with the picture that these relics trace large-scale shocks propagating outwards during the merger. Assuming diffusive shock acceleration (DSA), we obtain shock Mach numbers of M = 2.4 and 2.3 for the northern and southern shocks, respectively. For M ≲ 3 shocks, a pre-existing population of mildly relativistic electrons is required to explain the brightness of the relics due to the high (> 10 per cent) particle acceleration efficiency required. However, for M ≳ 4 shocks the required efficiency is ≳ 1% and ≳ 0.5%, respectively, which is low enough for shock acceleration directly from the thermal pool. We used the fractional polarization to constrain the viewing angle to ≥ 53 ± 3° and ≥ 39 ± 5° for the northern and southern shocks, respectively. We found no evidence for diffuse emission in the cluster central region. If the halo spans the entire region between the relics (∼1.8 Mpc) our upper limit on the power is P1.4 GHz = (1.4 ± 0.6) × 1023 W Hz−1 which is approximately equal to the anticipated flux from a cluster of this mass. However, if the halo is smaller than this, our constraints on the power imply that the halo is underluminous

    LOFAR discovery of a double radio halo system in Abell 1758 and radio/X-ray study of the cluster pair

    Get PDF
    Radio halos and radio relics are diffuse synchrotron sources that extend over Mpc-scales and are found in a number of merger galaxy clusters. They are believed to form as a consequence of the energy that is dissipated by turbulence and shocks in the intra-cluster medium (ICM). However, the precise physical processes that generate these steep synchrotron spectrum sources are still poorly constrained. We present a new LOFAR observation of the double galaxy cluster Abell 1758. This system is composed of A1758N, a massive cluster hosting a known giant radio halo, and A1758S, which is a less massive cluster whose diffuse radio emission is confirmed here for the first time. Our observations have revealed a radio halo and a candidate radio relic in A1758S, and a suggestion of emission along the bridge connecting the two systems which deserves confirmation. We combined the LOFAR data with archival VLA and GMRT observations to constrain the spectral properties of the diffuse emission. We also analyzed a deep archival Chandra observation and used this to provide evidence that A1758N and A1758S are in a pre-merger phase. The ICM temperature across the bridge that connects the two systems shows a jump which might indicate the presence of a transversal shock generated in the initial stage of the merger

    Coherent states for the hydrogen atom: discrete and continuous spectra

    Get PDF
    We construct the systems of generalised coherent states for the discrete and continuous spectra of the hydrogen atom. These systems are expressed in elementary functions and are invariant under the SO(3,2)SO(3, 2) (discrete spectrum) and SO(4,1)SO(4, 1) (continuous spectrum) subgroups of the dynamical symmetry group SO(4,2)SO(4, 2) of the hydrogen atom. Both systems of coherent states are particular cases of the kernel of integral operator which interwines irreducible representations of the SO(4,2)SO(4, 2) group.Comment: 15 pages, LATEX, minor sign corrections, to appear in J.Phys.

    Analysis of the Expression of Repetitive DNA Elements in Osteosarcoma

    Get PDF
    Osteosarcoma (OS) is a rare malignant bone tumor. It affects mostly young persons and has poor outcome with the present treatment. No improvement was observed since the introduction of chemotherapy. The better understanding of osteosarcoma development could indicate better management strategy. Repetitive DNA elements were found to play a role in cancer mechanism especially in epithelial tumors but not yet analyzed in osteosarcoma. We conducted the study to analyse the expression profile of repetitive elements (RE) in osteosarcoma. Methods: Fresh bone paired (tumor and normal bone) samples were obtained from excised parts of tumors of 18 patients with osteosarcoma. We performed sequencing of RNA extracted from 36 samples (18 tumor tissues and 18 normal bone for controls), mapped raw reads to the human genome and identified the REs. EdgeR package was used to analyse the difference in expression of REs between osteosarcoma and normal bone. Results: 82 REs were found differentially expressed (FDR < 0.05) between osteosarcoma and normal bone. Out of all significantly changed REs, 35 were upregulated and 47 were downregulated. HERVs (THE1C-int, LTR5, MER57F and MER87B) and satellite elements (HSATII, ALR-alpha) were the most significantly differential expressed elements between osteosarcoma and normal tissues. These results suggest significant impact of REs in the osteosarcoma. The role of REs should be further studied to understand the mechanism they have in the genesis of osteosarcoma
    corecore