34 research outputs found
MYC Induces Oncogenic Stress through RNA Decay and Ribonucleotide Catabolism in Breast Cancer
Upregulation of MYC is a hallmark of cancer, wherein MYC drives oncogenic gene expression and elevates total RNA synthesis across cancer cell transcriptomes. Although this transcriptional anabolism fuels cancer growth and survival, the consequences and metabolic stresses induced by excess cellular RNA are poorly understood. Herein, we discover that RNA degradation and downstream ribonucleotide catabolism is a novel mechanism of MYC-induced cancer cell death. Combining genetics and metabolomics, we find that MYC increases RNA decay through the cytoplasmic exosome, resulting in the accumulation of cytotoxic RNA catabolites and reactive oxygen species. Notably, tumor-derived exosome mutations abrogate MYC-induced cell death, suggesting excess RNA decay may be toxic to human cancers. In agreement, purine salvage acts as a compensatory pathway that mitigates MYC-induced ribonucleotide catabolism, and inhibitors of purine salvage impair MYC+ tumor progression. Together, these data suggest that MYC-induced RNA decay is an oncogenic stress that can be exploited therapeutically.
Significance: MYC is the most common oncogenic driver of poor-prognosis cancers but has been recalcitrant to therapeutic inhibition. We discovered a new vulnerability in MYC+ cancer where MYC induces cell death through excess RNA decay. Therapeutics that exacerbate downstream ribonucleotide catabolism provide a therapeutically tractable approach to TNBC (Triple-negative Breast Cancer) and other MYC-driven cancers
Novel Acyclic Nucleoside Phosphonate Analogues with Potent Anti-Hepatitis B Virus Activities
Novel acyclic nucleoside phosphonates with a pyrimidine base preferentially containing an amino group at C-2 and C-4 and a 2-(phosphonomethoxy)ethoxy or (R)-2-(phosphonomethoxy)propoxy group at C-6 selectively inhibit the replication of wild-type and lamivudine-resistant hepatitis B viruses. The activity of the most potent compounds was comparable to that of adefovir
Aza-acyclic nucleoside phosphonates containing a second phosphonate group as inhibitors of the human, Plasmodium falciparum and vivax 6-oxopurine phosphoribosyltransferases and their prodrugs as antimalarial agents
Hypoxanthine-guanine-[xanthine] phosphoribosyltransferase (HG[X]PRT) is considered an important target for antimalarial chemotherapy as it is the only pathway for the synthesis of the purine nucleoside monophosphates required for DNA/RNA production. Thus, inhibition of this enzyme should result in cessation of replication. The aza-acyclic nucleoside phosphonates (aza-ANPs) are good inhibitors of Plasmodium falciparum HGXPRT (PfHGXPRT), with Ki values as low as 0.08 and 0.01 μM for Plasmodium vivax HGPRT (PvHGPRT). Prodrugs of these aza-ANPs exhibit antimalarial activity against Pf lines with IC50 values (0.8-6.0 μM) and have low cytotoxicity against human cells. Crystal structures of six of these compounds in complex with human HGPRT have been determined. These suggest that the different affinities of these aza-ANPs could be due to the flexibility of the loops surrounding the active site as well as the flexibility of the inhibitors, allowing them to adapt to fit into three binding pockets of the enzyme(s).status: publishe
Sulfide, sulfoxide and sulfone bridged acyclic nucleoside phosphonates as inhibitors of the Plasmodium falciparum and human 6-oxopurine phosphoribosyltransferases: Synthesis and evaluation
Nucleotide analogues containing a pyrrolidine, piperidine or piperazine ring: Synthesis and evaluation of inhibition of plasmodial and human 6-oxopurine phosphoribosyltransferases and in vitro antimalarial activity
Synthesis and evaluation of asymmetric acyclic nucleoside bisphosphonates as inhibitors of Plasmodium falciparum and human hypoxanthine-guanine-(xanthine) phosphoribosyltransferase
Acyclic nucleoside bisphosphonates (ANbPs) have previously been shown to be good inhibitors of human hypoxanthine-guanine phosphoribosyltransferase (HGPRT) and Plasmodium falciparum (Pf) hypoxanthine-guanine-xanthine phosphoribosyltransferase (PfHGXPRT). On the basis of this scaffold, a new series of ANbPs was synthesized. One of these new ANbPs, [3-(guanine-9-yl)-2-((2-phosphonoethoxy)methyl)propoxy]methylphosphonic acid, exhibited Ki values of 6 and 70 nM for human HGPRT and Pf HGXPRT, respectively. These low Ki values were achieved by inserting an extra carbon atom in the linker connecting the N(9) atom of guanine to one of the phosphonate groups. The crystal structure of this ANbP in complex with human HGPRT was determined at 2.0 Å resolution and shows that it fills three key pockets in the active site. The most potent phosphoramidate prodrugs of these compounds have IC50 values in the low micromolar range in Pf lines and low toxicity in human A549 cells, demonstrating that these ANbPs are excellent antimalarial drug leads.status: publishe
Synthesis and Evaluation of Asymmetric Acyclic Nucleoside Bisphosphonates as Inhibitors of Plasmodium falciparum and Human Hypoxanthine-Guanine-(Xanthine) Phosphoribosyltransferase
Acyclic nucleoside bisphosphonates (ANbPs) have previously been shown to be good inhibitors of human hypoxanthine-guanine phosphoribosyltransferase (HGPRT) and Plasmodium falciparum (Pf) hypoxanthine-guanine-xanthine phosphoribosyltransferase (PfHGXPRT). On the basis of this scaffold, a new series of ANbPs was synthesized. One of these new ANbPs, [3-(guanine-9-yl)-2-((2-phosphonoethoxy)methyl)propoxy]methylphosphonic acid, exhibited K values of 6 and 70 nM for human HGPRT and Pf HGXPRT, respectively. These low K values were achieved by inserting an extra carbon atom in the linker connecting the N atom of guanine to one of the phosphonate groups. The crystal structure of this ANbP in complex with human HGPRT was determined at 2.0 Å resolution and shows that it fills three key pockets in the active site. The most potent phosphoramidate prodrugs of these compounds have IC values in the low micromolar range in Pf lines and low toxicity in human A549 cells, demonstrating that these ANbPs are excellent antimalarial drug leads
6‐[2‐Phosphonomethoxy)Alkoxy]‐2,4‐Diaminopyrimidines: A New Class of Acyclic Pyrimidine Nucleoside Phosphonates with Antiviral Activity
Synthesis and evaluation of symmetric acyclic nucleoside bisphosphonates as inhibitors of the Plasmodium falciparum, Plasmodium vivax and human 6-oxopurine phosphoribosyltransferases and the antimalarial activity of their prodrugs
Two new series of symmetric acyclic nucleoside bisphosphonates (ANbPs) have been synthesised as potential inhibitors of the Plasmodium falciparum (Pf) and vivax (Pv) 6-oxopurine phosphoribosyltransferases. The structural variability between these symmetric ANbPs lies in the number of atoms in the two acyclic linkers connecting the N(9) atom of the purine base to each of two phosphonate groups and the branching point of the acyclic moiety relative to the purine base, which occurs at either the alpha or beta positions. Within each series, six different 6-oxopurine bases have been attached. In general, the ANbPs with either guanine or hypoxanthine have lower Ki values than for those containing either the 8-bromo or 7-deaza 6-oxopurine bases. The lowest Ki values obtained for the two parasite enzymes were 0.1μM (Pf) and 0.2μM (Pv) for this series of compounds. Two phosphoramidate prodrugs of these inhibitors exhibited antimalarial activity against Pf in infected erythrocyte cell culture with IC50 values of 0.8 and 1.5μM. These two compounds exhibited low cytotoxicity in human A549 cells having CC50 values of >300μM resulting in an excellent selectivity index.publisher: Elsevier
articletitle: Synthesis and evaluation of symmetric acyclic nucleoside bisphosphonates as inhibitors of the Plasmodium falciparum, Plasmodium vivax and human 6-oxopurine phosphoribosyltransferases and the antimalarial activity of their prodrugs
journaltitle: Bioorganic & Medicinal Chemistry
articlelink: http://dx.doi.org/10.1016/j.bmc.2017.05.048
content_type: article
copyright: © 2017 Elsevier Ltd. All rights reserved.status: publishe
