7,306 research outputs found
Substructure Discovery Using Minimum Description Length and Background Knowledge
The ability to identify interesting and repetitive substructures is an
essential component to discovering knowledge in structural data. We describe a
new version of our SUBDUE substructure discovery system based on the minimum
description length principle. The SUBDUE system discovers substructures that
compress the original data and represent structural concepts in the data. By
replacing previously-discovered substructures in the data, multiple passes of
SUBDUE produce a hierarchical description of the structural regularities in the
data. SUBDUE uses a computationally-bounded inexact graph match that identifies
similar, but not identical, instances of a substructure and finds an
approximate measure of closeness of two substructures when under computational
constraints. In addition to the minimum description length principle, other
background knowledge can be used by SUBDUE to guide the search towards more
appropriate substructures. Experiments in a variety of domains demonstrate
SUBDUE's ability to find substructures capable of compressing the original data
and to discover structural concepts important to the domain. Description of
Online Appendix: This is a compressed tar file containing the SUBDUE discovery
system, written in C. The program accepts as input databases represented in
graph form, and will output discovered substructures with their corresponding
value.Comment: See http://www.jair.org/ for an online appendix and other files
accompanying this articl
Size bias and differential lensing of strongly lensed, dusty galaxies identified in wide-field surveys
We address two selection effects that operate on samples of gravitationally
lensed dusty galaxies identified in millimeter- and submillimeter-wavelength
surveys. First, we point out the existence of a "size bias" in such samples:
due to finite source effects, sources with higher observed fluxes are
increasingly biased towards more compact objects. Second, we examine the effect
of differential lensing in individual lens systems by modeling each source as a
compact core embedded in an extended diffuse halo. Considering the ratio of
magnifications in these two components, we find that at high overall
magnifications the compact component is amplified by a much larger factor than
the diffuse component, but at intermediate magnifications (~10) the probability
of a larger magnification for the extended region is higher. Lens models
determined from multi-frequency resolved imaging data are crucial to correct
for this effect.Comment: 7 pages, 6 figure
Toxoplasma gondii profilin does not stimulate an innate immune response through bovine or human TLR5
Toxoplasma gondii is responsible for one of the most prevalent infections in people. T. gondii profilin (TgPr) is a protein integral to parasite movement and cellular invasion. Murine TLR has been described to bind TgPr. Furthermore, more recently, human TLR5 has been described to recognise recombinant TgPr, as well as bacterial flagellin. In addition to infections in humans, T. gondii infects farm animals, but little information is available about its innate recognition. We aimed to investigate whether, similarly to their human orthologue, bovine and porcine TLR5 could also be stimulated by TgPr by using a combination of reporter cell lines expressing full length TLR5 from each species as well as primary cells. Although human and bovine TLR5-transfected cells responded to flagellin, no response was detected upon stimulation
with profilin. Furthermore, TgPr failed to elicit IL-6 secretion in human peripheral blood mononuclear cells and CD14þ monocytes. In contrast, exposure of RAW cells, known to express TLR11 to TgPr, slightly increased the IL-6 response. Our data cast doubts on the possibility that profilin is a specific ligand for human TLR5 and bovine TLR5. This leaves the immunogenic properties of this potential target antigen uncharacterised outside of the murine system
Combining galaxy and 21cm surveys
Acoustic waves traveling through the early Universe imprint a characteristic
scale in the clustering of galaxies, QSOs and inter-galactic gas. This scale
can be used as a standard ruler to map the expansion history of the Universe, a
technique known as Baryon Acoustic Oscillations (BAO). BAO offer a
high-precision, low-systematics means of constraining our cosmological model.
The statistical power of BAO measurements can be improved if the `smearing' of
the acoustic feature by non-linear structure formation is undone in a process
known as reconstruction. In this paper we use low-order Lagrangian perturbation
theory to study the ability of cm experiments to perform reconstruction
and how augmenting these surveys with galaxy redshift surveys at relatively low
number densities can improve performance. We find that the critical number
density which must be achieved in order to benefit cm surveys is set by
the linear theory power spectrum near its peak, and corresponds to densities
achievable by upcoming surveys of emission line galaxies such as eBOSS and
DESI. As part of this work we analyze reconstruction within the framework of
Lagrangian perturbation theory with local Lagrangian bias, redshift-space
distortions, -dependent noise and anisotropic filtering schemes.Comment: 10 pages, final version to appear in MNRAS, helpful suggestions from
referee and others include
In vivo bioimpedance measurement of healthy and ischaemic rat brain: implications for stroke imaging using electrical impedance tomography.
In order to facilitate the imaging of haemorrhagic and ischaemic stroke using frequency difference electrical impedance tomography (EIT), impedance measurements of normal and ischaemic brain, and clotted blood during haemorrhage, were gathered using a four-terminal technique in an in vivo animal model, a first for ischaemic measurements. Differences of 5-10% in impedance were seen between the frequency spectrums of healthy and ischaemic brain, over the frequency range 0-3 kHz, while the spectrum of blood was predominately uniform. The implications of imaging blood/ischaemia in the brain using electrical impedance tomography are discussed, supporting the notion that it will be possible to differentiate stroke from haemorrhage
In vivo bioimpedance changes during haemorrhagic and ischaemic stroke in rats: Towards 3D stroke imaging using electrical impedance tomography
Electrical impedance tomography (EIT) could be used as a portable non-invasive means to image the development of ischaemic stroke or haemorrhage. The purpose of this study was to examine if this was possible using time difference imaging, in the anesthetised rat using 40 spring-loaded scalp electrodes with applied constant currents of 50-150 μA at 2 kHz. Impedance changes in the largest 10% of electrode combinations were -12.8% ± 12.0% over the first 10 min for haemorrhage and +46.1% ± 37.2% over one hour for ischaemic stroke (mean ± SD, n = 7 in each group). The volume of the pathologies, assessed by tissue section and histology post-mortem, was 12.6 μl ± 17.6 μl and 12.6 μl ± 17.6 μl for haemorrhage and ischaemia respectively. In time difference EIT images, there was a correspondence with the pathology in 3/7 cases of haemorrhage and none of the ischaemic strokes. Although the net impedance changes were physiologically reasonable and consistent with expectations from the literature, it was disappointing that it was not possible to obtain reliable EIT images. The reason for this are not clear, but probably include confounding effects of secondary ischaemia for haemorrhage and tissue and cerebrospinal fluid shifts for the stroke model. With this method, it does not appear that EIT with scalp electrodes is yet ready for clinical use
- …
