5,162 research outputs found
A consistent spatial differencing scheme for the transonic full-potential equation in three dimensions
A full-potential steady transonic wing flow solver has been modified so that freestream density and residual are captured in regions of constant velocity. This numerically precise freestream consistency is obtained by slightly altering the differencing scheme without affecting the implicit solution algorithm. The changes chiefly affect the fifteen metrics per grid point, which are computed once and stored. With this new method, the outer boundary condition is captured accurately, and the smoothness of the solution is especially improved near regions of grid discontinuity
Biological and aerodynamic problems with the flight of animals
Biological and aerodynamic considerations related to birds and insects are discussed. A wide field is open for comparative biological, physiological, and aerodynamic investigations. Considerable mathematics related to the flight of animals is presented, including 20 equations. The 15 figures included depict the design of bird and insect wings, diagrams of propulsion efficiency, thrust, lift, and angles of attack and photographs of flapping wing free flying wing only models which were built and flown
Black Holes and Wormholes in 2+1 Dimensions
A large variety of spacetimes---including the BTZ black holes---can be
obtained by identifying points in 2+1 dimensional anti-de Sitter space by means
of a discrete group of isometries. We consider all such spacetimes that can be
obtained under a restriction to time symmetric initial data and one asymptotic
region only. The resulting spacetimes are non-eternal black holes with
collapsing wormhole topologies. Our approach is geometrical, and we discuss in
detail: The allowed topologies, the shape of the event horizons, topological
censorship and trapped curves.Comment: 23 pages, LaTeX, 11 figure
Making Anti-de Sitter Black Holes
It is known from the work of Banados et al. that a space-time with event
horizons (much like the Schwarzschild black hole) can be obtained from 2+1
dimensional anti-de Sitter space through a suitable identification of points.
We point out that this can be done in 3+1 dimensions as well. In this way we
obtain black holes with event horizons that are tori or Riemann surfaces of
genus higher than one. They can have either one or two asymptotic regions.
Locally, the space-time is isometric to anti-de Sitter space.Comment: LaTeX, 10 pages, 6 postscript figures, uses epsf.te
Recent applications of the transonic wing analysis computer code, TWING
An evaluation of the transonic-wing-analysis computer code TWING is given. TWING utilizes a fully implicit approximate factorization iteration scheme to solve the full potential equation in conservative form. A numerical elliptic-solver grid-generation scheme is used to generate the required finite-difference mesh. Several wing configurations were analyzed, and the limits of applicability of this code was evaluated. Comparisons of computed results were made with available experimental data. Results indicate that the code is robust, accurate (when significant viscous effects are not present), and efficient. TWING generally produces solutions an order of magnitude faster than other conservative full potential codes using successive-line overrelaxation. The present method is applicable to a wide range of isolated wing configurations including high-aspect-ratio transport wings and low-aspect-ratio, high-sweep, fighter configurations
A Spinning Anti-de Sitter Wormhole
We construct a 2+1 dimensional spacetime of constant curvature whose spatial
topology is that of a torus with one asymptotic region attached. It is also a
black hole whose event horizon spins with respect to infinity. An observer
entering the hole necessarily ends up at a "singularity"; there are no inner
horizons.
In the construction we take the quotient of 2+1 dimensional anti-de Sitter
space by a discrete group Gamma. A key part of the analysis proceeds by
studying the action of Gamma on the boundary of the spacetime.Comment: Latex, 28 pages, 7 postscript figures included in text, a Latex file
without figures can be found at http://vanosf.physto.se/~stefan/spinning.html
Replaced with journal version, minor change
Examination of smears for tubercle bacilli by Fluorescence Microscopy
IN underdeveloped countries, laboratory facilities for the bacteriological
diagnosis of tuberculosis are at present, very limited. Cultural methods are
unlikely to be used on a large scale for many years to come. It is, therefore, important to
investigate the most economical method of examining smears for
tubercle bacilli. Fluorescence microscopy was introduced by Hagemann (1937)
and has since been described by many authors, including Tanner (1941, 1948), Lind
and Shaughnessy (1941), Lempert (1944), Norman and Jelks (1945), Clegg and
Foster-Carter (1946), Wilson (1952), Von Haebler and Murray (1954), and Needham
(1957). The great advantage claimed for this method is that stained bacilli can be
detected using a much lower magnification than with the usual Ziehl-Neelsen
method. Considerable time is saved in examining smears and larger areas can be
searched. The method has not been widely employed for two reasons. In the
first place, the light source must be very bright and many of the optical systems
described previously have only supplied sufficient light if the equipment was used in
a darkened room. Secondly, some workers (Ritterhoff and Bowman, 1945; Kuster,
1939; Holm and Plum, 1943) consider that false positive results can be obtained,
since some smears may contain small naturally fluorescent particles which can be
confused with bacilli.
Equipment for fluorescence microscopy that can be used in normal daylight
has been in use at the Tuberculosis Chemotherapy Centre, Madras, for over two
years. When it was first introduced, a comparison between this method and the
conventional Ziehl-Neelsen method was undertaken to test their relative sensitivities,
and to see whether fluorescence microscopy yielded false positive results.
The results of this comparison are described
Computational aspects of zonal algorithms for solving the compressible Navier-Stokes equations in three dimensions
Transonic flow fields about wing geometries are computed using an Euler/Navier-Stokes approach in which the flow field is divided into several zones. The flow field immediately adjacent to the wing surface is resolved with fine grid zones and solved using a Navier-Stokes algorithm. Flow field regions removed from the wing are resolved with less finely clustered grid zones and are solved with an Euler algorithm. Computational issues associated with this zonal approach, including data base management aspects, are discussed. Solutions are obtained that are in good agreement with experiment, including cases with significant wind tunnel wall effects. Additional cases with significant shock induced separation on the upper wing surface are also presented
TAIR: A transonic airfoil analysis computer code
The operation of the TAIR (Transonic AIRfoil) computer code, which uses a fast, fully implicit algorithm to solve the conservative full-potential equation for transonic flow fields about arbitrary airfoils, is described on two levels of sophistication: simplified operation and detailed operation. The program organization and theory are elaborated to simplify modification of TAIR for new applications. Examples with input and output are given for a wide range of cases, including incompressible, subcritical compressible, and transonic calculations
Black Holes and Causal Structure in Anti-de Sitter Isometric Spacetimes
The observation that the 2+1 dimensional BTZ black hole can be obtained as a
quotient space of anti-de Sitter space leads one to ask what causal behaviour
other such quotient spaces can display. In this paper we answer this question
in 2+1 and 3+1 dimensions when the identification group has one generator.
Among other things we find that there does not exist any 3+1 generalization of
the rotating BTZ hole. However, the non-rotating generalization exists and
exhibits some unexpected properties. For example, it turns out to be non-static
and to possess a non-trivial apparent horizon.Comment: LaTeX, 22 pages, 10 postscript figures, uses epsf.te
- …
