1,160 research outputs found
An Optimal Execution Problem with Market Impact
We study an optimal execution problem in a continuous-time market model that
considers market impact. We formulate the problem as a stochastic control
problem and investigate properties of the corresponding value function. We find
that right-continuity at the time origin is associated with the strength of
market impact for large sales, otherwise the value function is continuous.
Moreover, we show the semi-group property (Bellman principle) and characterise
the value function as a viscosity solution of the corresponding
Hamilton-Jacobi-Bellman equation. We introduce some examples where the forms of
the optimal strategies change completely, depending on the amount of the
trader's security holdings and where optimal strategies in the Black-Scholes
type market with nonlinear market impact are not block liquidation but gradual
liquidation, even when the trader is risk-neutral.Comment: 36 pages, 8 figures, a modified version of the article "An optimal
execution problem with market impact" in Finance and Stochastics (2014
Three-loop \beta-functions for top-Yukawa and the Higgs self-interaction in the Standard Model
We analytically compute the dominant contributions to the \beta-functions for
the top-Yukawa coupling, the strong coupling and the Higgs self-coupling as
well as the anomalous dimensions of the scalar, gluon and quark fields in the
unbroken phase of the Standard Model at three-loop level. These are mainly the
QCD and top-Yukawa corrections. The contributions from the Higgs
self-interaction which are negligible for the running of the top-Yukawa and the
strong coupling but important for the running of the Higgs self-coupling are
also evaluated.Comment: 22 pages, 7 figures. Few extra citations are added; the plots are
improved. Results in computer readable form can be retrieved from
http://www-ttp.particle.uni-karlsruhe.de/Progdata/ttp12/ttp12-012
Corporate governance compliance and disclosure in the banking sector: using data from Japan
Using regression model this study investigates which characteristics of a bank is associated with the extent of corporate governance disclosure in Japan. The findings suggest that on average 8 banks out of a sample of 46 disclose optimal corporate governance information. The regression model results reveal in general that non-executive directors, cross-ownership, capital adequacy ratio and type of auditors are associated with the extent of corporate governance disclosure. Of these four variables, non-executive directors have a more significant impact on the extent of disclosure contrary to total assets and audit firms of banks in the context of Japan. The findings of this paper are relevant for corporate regulators, professional associations and developers of corporate governance code when designing or updating corporate governance code
A Shift Symmetry in the Higgs Sector: Experimental Hints and Stringy Realizations
We interpret reported hints of a Standard Model Higgs boson at ~ 125 GeV in
terms of high-scale supersymmetry breaking with a shift symmetry in the Higgs
sector. More specifically, the Higgs mass range suggested by recent LHC data
extrapolates, within the (non-supersymmetric) Standard Model, to a vanishing
quartic Higgs coupling at a UV scale between 10^6 and 10^18 GeV. Such a small
value of lambda can be understood in terms of models with high-scale SUSY
breaking if the Kahler potential possesses a shift symmetry, i.e., if it
depends on H_u and H_d only in the combination (H_u+\bar{H}_d). This symmetry
is known to arise rather naturally in certain heterotic compactifications. We
suggest that such a structure of the Higgs Kahler potential is common in a
wider class of string constructions, including intersecting D7- and D6-brane
models and their extensions to F-theory or M-theory. The latest LHC data may
thus be interpreted as hinting to a particular class of compactifications which
possess this shift symmetry.Comment: v2: References added. v3: References added, published versio
Proceedings of the 2nd Workshop on Flavor Symmetries and Consequences in Accelerators and Cosmology (FLASY12)
These are the proceedings of the 2nd Workshop on Flavor Symmetries and
Consequences in Accelerators and Cosmology, held 30 June 2012 - 4 July 2012,
Dortmund, Germany.Comment: Order 400 pages, several figures including the group picture v2:
corrected author list and contributio
Higgs mass and vacuum stability in the Standard Model at NNLO
We present the first complete next-to-next-to-leading order analysis of the
Standard Model Higgs potential. We computed the two-loop QCD and Yukawa
corrections to the relation between the Higgs quartic coupling (lambda) and the
Higgs mass (Mh), reducing the theoretical uncertainty in the determination of
the critical value of Mh for vacuum stability to 1 GeV. While lambda at the
Planck scale is remarkably close to zero, absolute stability of the Higgs
potential is excluded at 98% C.L. for Mh < 126 GeV. Possible consequences of
the near vanishing of lambda at the Planck scale, including speculations about
the role of the Higgs field during inflation, are discussed.Comment: 35 pages, 8 figures. Final published version, misprints fixed,
figures update
The 3-3-1 model with S_4 flavor symmetry
We construct a 3-3-1 model based on family symmetry S_4 responsible for the
neutrino and quark masses. The tribimaximal neutrino mixing and the diagonal
quark mixing have been obtained. The new lepton charge \mathcal{L} related to
the ordinary lepton charge L and a SU(3) charge by L=2/\sqrt{3} T_8+\mathcal{L}
and the lepton parity P_l=(-)^L known as a residual symmetry of L have been
introduced which provide insights in this kind of model. The expected vacuum
alignments resulting in potential minimization can origin from appropriate
violation terms of S_4 and \mathcal{L}. The smallness of seesaw contributions
can be explained from the existence of such terms too. If P_l is not broken by
the vacuum values of the scalar fields, there is no mixing between the exotic
and the ordinary quarks at the tree level.Comment: 20 pages, revised versio
The Intermediate Scale MSSM, the Higgs Mass and F-theory Unification
Even if SUSY is not present at the Electro-Weak scale, string theory suggests
its presence at some scale M_{SS} below the string scale M_s to guarantee the
absence of tachyons. We explore the possible value of M_{SS} consistent with
gauge coupling unification and known sources of SUSY breaking in string theory.
Within F-theory SU(5) unification these two requirements fix M_{SS} ~ 5 x
10^{10} GeV at an intermediate scale and a unification scale M_c ~ 3 x 10^{14}
GeV. As a direct consequence one also predicts the vanishing of the quartic
Higgs SM self-coupling at M_{SS} ~10^{11} GeV. This is tantalizingly consistent
with recent LHC hints of a Higgs mass in the region 124-126 GeV. With such a
low unification scale M_c ~ 3 x 10^{14} GeV one may worry about too fast proton
decay via dimension 6 operators. However in the F-theory GUT context SU(5) is
broken to the SM via hypercharge flux. We show that this hypercharge flux
deforms the SM fermion wave functions leading to a suppression, avoiding in
this way the strong experimental proton decay constraints. In these
constructions there is generically an axion with a scale of size f_a ~
M_c/(4\pi)^2 ~ 10^{12} GeV which could solve the strong CP problem and provide
for the observed dark matter. The prize to pay for these attractive features is
to assume that the hierarchy problem is solved due to anthropic selection in a
string landscape.Comment: 48 pages, 8 figures. v3: further minor correction
Constraining Bosonic Supersymmetry from Higgs results and 8 TeV ATLAS multi-jets plus missing energy data
The collider phenomenology of models with Universal Extra Dimensions (UED) is
surprisingly similar to that of supersymmetric (SUSY) scenarios. For each
level-1 bosonic (fermionic) Kaluza-Klein (KK) state, there is a fermionic
(bosonic) analog in SUSY and thus UED scenarios are often known as bosonic
supersymmetry. The minimal version of UED (mUED) gives rise to a
quasi-degenerate particle spectrum at each KK-level and thus, can not explain
the enhanced Higgs to diphoton decay rate hinted by the ATLAS collaboration of
the Large Hadron Collider (LHC) experiment. However, in the non-minimal version
of the UED (nmUED) model, the enhanced Higgs to diphoton decay rate can be
easily explained via the suitable choice of boundary localized kinetic (BLK)
terms for higher dimensional fermions and gauge bosons. BLK terms remove the
degeneracy in the KK mass spectrum and thus, pair production of level-1 quarks
and gluons at the LHC gives rise to hard jets, leptons and large missing energy
in the final state. These final states are studied in details by the ATLAS and
CMS collaborations in the context of SUSY scenarios. We find that the absence
of any significant deviation of the data from the Standard Model (SM)
prediction puts a lower bound of about 2.1 TeV on equal mass excited quarks and
gluons.Comment: 19 page
CARoma Therapy: Pleasant Scents Promote Safer Driving, Better Mood, and Improved Well-Being in Angry Drivers
Driving is a task that is often affected by emotions. The effect of emotions on driving has been extensively studied. Anger is an emotion that dominates in such investigations. Despite the knowledge on strong links between scents and emotions, few studies have explored the effect of olfactory stimulation in a context of driving. Such an outcome provides HCI practitioners very little knowledge on how to design for emotions using olfactory stimulation in the car. We carried out three studies to select scents of different valence and arousal levels (i.e. rose, peppermint, and civet) and anger eliciting stimuli (i.e. affective pictures and on-road events). We used this knowledge to conduct the fourth user study investigating how the selected scents change the emotional state, well-being, and driving behaviour of drivers in an induced angry state. Our findings enable better decisions on what scents to choose when designing interactions for angry drivers
- …
